A pulmonary artery catheter (PAC), also known as a Swan-Ganz catheter or right heart catheter, is a balloon-tipped catheter that is inserted into a pulmonary artery in a procedure known as pulmonary artery catheterization or right heart catheterization. Pulmonary artery catheterization is a useful measure of the overall function of the heart particularly in those with complications from heart failure, heart attack, arrythmias or pulmonary embolism. It is also a good measure for those needing intravenous fluid therapy, for instance post heart surgery, shock, and severe burns. The procedure can also be used to measure pressures in the heart chambers.
The pulmonary artery catheter allows direct, simultaneous measurement of pressures in the right atrium, right ventricle, pulmonary artery, and the filling pressure (pulmonary wedge pressure) of the left atrium. The pulmonary artery catheter is frequently referred to as a Swan-Ganz catheter, in honor of its inventors Jeremy Swan and William Ganz, from Cedars-Sinai Medical Center.
General indications are:
Management of complicated myocardial infarction
Hypovolemia vs cardiogenic shock
Ventricular septal rupture (VSR) vs acute mitral regurgitation
Severe left ventricular failure
Right ventricular infarction
Unstable angina
Refractory ventricular tachycardia
Assessment of respiratory distress
Cardiogenic vs non-cardiogenic pulmonary edema
Primary vs secondary pulmonary hypertension
Assessment of types of shock
Assessment of therapy
Afterload reduction
Vasopressors
Beta blockers
Intra-aortic balloon counter-pulsation
Assessment of fluid requirement in critically ill patients
Hemorrhage
Sepsis
Acute kidney injury
Burns
Management of postoperative open heart surgical patients
Assessment of valvular heart disease
Assessment of cardiac tamponade/constriction
No study has definitively demonstrated improved outcome in critically ill patients managed with PA catheters. Given that the PA catheter is a monitoring tool and not a therapy in and of itself this is not entirely surprising.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
In cardiac physiology, preload is the amount of sarcomere stretch experienced by cardiac muscle cells, called cardiomyocytes, at the end of ventricular filling during diastole. Preload is directly related to ventricular filling. As the relaxed ventricle fills during diastole, the walls are stretched and the length of sarcomeres increases. Sarcomere length can be approximated by the volume of the ventricle because each shape has a conserved surface-area-to-volume ratio.
Afterload is the pressure that the heart must work against to eject blood during systole (ventricular contraction). Afterload is proportional to the average arterial pressure. As aortic and pulmonary pressures increase, the afterload increases on the left and right ventricles respectively. Afterload changes to adapt to the continually changing demands on an animal's cardiovascular system. Afterload is proportional to mean systolic blood pressure and is measured in millimeters of mercury (mm Hg).
Cardiac catheterization (heart cath) is the insertion of a catheter into a chamber or vessel of the heart. This is done both for diagnostic and interventional purposes. A common example of cardiac catheterization is coronary catheterization that involves catheterization of the coronary arteries for coronary artery disease and myocardial infarctions ("heart attacks"). Catheterization is most often performed in special laboratories with fluoroscopy and highly maneuverable tables.
Explores the direct measurement of arterial pressure using resistive sensors and discusses the dynamic properties of pressure measurement systems.
Explores non-patent strategies for IP management, including defensive publication, trademarks, copyrights, and trade secrets, emphasizing alignment with business goals.
Explores the anatomy of major arteries, emphasizing branches and anastomoses for clinical applications.
Atrial fibrillation (AF) is the most common cardiac arrhythmia; it will affect one in four adults worldwide in their lifetime. AF has serious consequences, including drastically increased risk of stroke. Catheter ablation surgery is an established treatmen ...
EPFL2023
,
[0054] Methods are provided for estimating key reliably and accurately predicting cardiac output using a limited set of non-invasively monitored physiologic inputs, and a calibrated one- dimensional arterial tree model, a database of synthetic data generat ...
Background Superimposition of farfield (FF) and nearfield (NF) bipolar voltage electrograms (BVE) complicates the confirmation of pulmonary vein (PV) isolation after catheter ablation of atrial fibrillation. Our aim was to develop an automatic algorithm ba ...