In cardiac physiology, preload is the amount of sarcomere stretch experienced by cardiac muscle cells, called cardiomyocytes, at the end of ventricular filling during diastole. Preload is directly related to ventricular filling. As the relaxed ventricle fills during diastole, the walls are stretched and the length of sarcomeres increases. Sarcomere length can be approximated by the volume of the ventricle because each shape has a conserved surface-area-to-volume ratio. This is useful clinically because measuring the sarcomere length is destructive to heart tissue. It requires cutting out a piece of cardiac muscle to look at the sarcomeres under a microscope. It is currently not possible to directly measure preload in the beating heart of a living animal. Preload is estimated from end-diastolic ventricular pressure and is measured in millimeters of mercury (mmHg). Though not exactly equivalent to the strict definition of preload, end-diastolic volume is better suited to the clinic. It is relatively straightforward to estimate the volume of a healthy, filled left ventricle by visualizing the 2D cross-section with cardiac ultrasound. This technique is less helpful for estimating right ventricular preload because it is difficult to calculate the volume in an asymmetrical chamber. In cases of rapid heart rate, it can be difficult to capture the moment of maximum fill at the end of diastole, which means the volume may be difficult to measure in children or during tachycardia. An alternative to estimating the end-diastolic volume of the heart is to measure the end-diastolic pressure. This is possible because pressure and volume are related to one another according to Boyle's law, which can be simplified to The end diastolic pressure of the right ventricle can measured directly with a Swan-Ganz catheter. For the left ventricle, end diastolic pressure is most commonly estimated by taking the pulmonary wedge pressure, which is approximately equal to the pressure in the left atrium when the lungs are healthy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MATH-106(e): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
ME-481: Biomechanics of the cardiovascular system
This lecture will cover anatomy and physiology of the cardiovascular system, biophysics of the blood, cardiac mechanics, hemodynamics and biomechanics of the arterial system, microcirculation and biom
Show more
Related lectures (18)
Linear Differential Equations: Solution Methods
Covers solution methods for linear differential equations of second order with constant coefficients.
Linear Differential Equations
Explores linear differential equations, superposition of solutions, and verification methods.
Cardiac Mechanics: Structure and Function
Explores the anatomy and function of the heart, covering cardiac circulation, electrical activity, and muscle biomechanics.
Show more
Related publications (30)

Hemodynamic effects of a dielectric elastomer augmented aorta on aortic wave intensity: An in-vivo study

Yves Perriard, Yoan René Cyrille Civet, Thomas Guillaume Martinez, Francesco Clavica, Armando Matthieu Walter, Silje Ekroll Jahren, Lorenzo Ferrari

Dielectric elastomer actuator augmented aorta (DEA) represents a novel approach with high potential for assisting a failing heart. The soft tubular device replaces a section of the aorta and increases its diameter when activated. The hemodynamic interactio ...
2023

The Impact of Left Ventricular Performance and Afterload on the Evaluation of Aortic Valve Stenosis: A 1D Mathematical Modeling Approach

Nikolaos Stergiopoulos

The transaortic valvular pressure gradient (TPG) plays a central role in decision-making for patients suffering from severe aortic stenosis. However, the flow-dependence nature of the TPG makes the diagnosis of aortic stenosis challenging since the markers ...
MDPI2023

A novel soft cardiac assist device based on a dielectric elastomer augmented aorta: An in vivo study

Yves Perriard, Yoan René Cyrille Civet, Thomas Guillaume Martinez, Francesco Clavica, Armando Matthieu Walter, Silje Ekroll Jahren, Jonathan André Jean-Marie Chavanne, Lorenzo Ferrari

Although heart transplant is the preferred solution for patients suffering from heart failures, cardiac assist devices remain key substitute therapies. Among them, aortic augmentation using dielectric elastomer actuators (DEAs) might be an alternative tech ...
2022
Show more
Related concepts (8)
Pulmonary artery catheter
A pulmonary artery catheter (PAC), also known as a Swan-Ganz catheter or right heart catheter, is a balloon-tipped catheter that is inserted into a pulmonary artery in a procedure known as pulmonary artery catheterization or right heart catheterization. Pulmonary artery catheterization is a useful measure of the overall function of the heart particularly in those with complications from heart failure, heart attack, arrythmias or pulmonary embolism.
Cardiac output
In cardiac physiology, cardiac output (CO), also known as heart output and often denoted by the symbols , , or , is the volumetric flow rate of the heart's pumping output: that is, the volume of blood being pumped by a single ventricle of the heart, per unit time (usually measured per minute). Cardiac output (CO) is the product of the heart rate (HR), i.e. the number of heartbeats per minute (bpm), and the stroke volume (SV), which is the volume of blood pumped from the left ventricle per beat; thus giving the formula: Values for cardiac output are usually denoted as L/min.
Pulmonary hypertension
Pulmonary hypertension (PH or PHTN) is a condition of increased blood pressure in the arteries of the lungs. Symptoms include shortness of breath, fainting, tiredness, chest pain, swelling of the legs, and a fast heartbeat. The condition may make it difficult to exercise. Onset is typically gradual. According to the latest definition at the 6th World Symposium of Pulmonary Hypertension, a patient is deemed to have pulmonary hypertension if the pulmonary mean arterial pressure is greater than 20mmHg at rest, and Pulmonary Vascular Resistance PVR >3 Wood units.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.