The south-pointing chariot (or carriage) was an ancient Chinese two-wheeled vehicle that carried a movable pointer to indicate the south, no matter how the chariot turned. Usually, the pointer took the form of a doll or figure with an outstretched arm. The chariot was supposedly used as a compass for navigation and may also have had other purposes.
The ancient Chinese invented a mobile-like armored cart in the 5th century BC called the Dongwu Che (). It was used for the purpose of protecting warriors on the battlefield. The Chinese war wagon was designed as a kind of mobile protective cart with a shed-like roof. It would serve to be rolled up to city fortifications to provide protection for sappers digging underneath to weaken a wall's foundation. The early Chinese war wagon became the basis of technologies for the making of ancient Chinese south-pointing chariots.
There are legends of earlier south-pointing chariots, but the first reliably documented one was created by the Chinese mechanical engineer Ma Jun (200 – 265) of Cao Wei during the Three Kingdoms. No ancient chariots still exist, but many extant ancient Chinese texts mention them, saying they were used intermittently until about 1300. Some include information about their inner components and workings.
There were probably several types of south-pointing chariot which worked differently. In most or all of them, the rotating road wheels mechanically operated a geared mechanism to keep the pointer aimed correctly. The mechanism had no magnets and did not automatically detect which direction was south. The pointer was aimed southward by hand at the start of a journey. Subsequently, whenever the chariot turned, the mechanism rotated the pointer relative to the body of the chariot to counteract the turn and keep the pointer aiming in a constant direction, to the south. Thus the mechanism did a kind of directional dead reckoning, which is inherently prone to cumulative errors and uncertainties. Some chariots' mechanisms may have had differential gears.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An odometer or odograph is an instrument used for measuring the distance traveled by a vehicle, such as a bicycle or car. The device may be electronic, mechanical, or a combination of the two (electromechanical). The noun derives from ancient Greek ὁδόμετρον, hodómetron, from ὁδός, hodós ("path" or "gateway") and μέτρον, métron ("measure"). Early forms of the odometer existed in the ancient Greco-Roman world as well as in ancient China.
Ancient Chinese scientists and engineers made significant scientific innovations, findings and technological advances across various scientific disciplines including the natural sciences, engineering, medicine, military technology, mathematics, geology and astronomy. Among the earliest inventions were the binary code, and one of the earliest examples of genetic sequencing, abacus, the sundial, and the Kongming lantern.
The Antikythera mechanism (ˌæntɪˈkɪθɪərə ) is an Ancient Greek hand-powered orrery, described as the oldest known example of an analogue computer used to predict astronomical positions and eclipses decades in advance. It could also be used to track the four-year cycle of athletic games which was similar to an Olympiad, the cycle of the ancient Olympic Games. This artefact was among wreckage retrieved from a shipwreck off the coast of the Greek island Antikythera in 1901.
The Point Ahead Angle Mechanism (PAAM) for ESA’s Laser Interferometer Space Antenna (LISA) mission will compensate the out-of-plane point-ahead angle between three satellites flying 5 million kilometres apart. The PAAM consists of a mirror supported by fle ...
The ease with which humans coordinate all their limbs is fascinating. Such a simplicity is the result of a complex process of motor coordination, i.e. the ability to resolve the biomechanical redundancy in an efficient and repeatable manner. Coordination e ...
The development of new space missions with novel high-performance and very sensitive payloads for Earth observation or scientific missions has imposed considerably tougher requirements in terms of the satellite's pointing accuracy and stability, and thus o ...