Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope ratio mass spectrometry, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them.
Stable isotope geochemistry is largely concerned with isotopic variations arising from mass-dependent isotope fractionation, whereas radiogenic isotope geochemistry is concerned with the products of natural radioactivity.
For most stable isotopes, the magnitude of fractionation from kinetic and equilibrium fractionation is very small; for this reason, enrichments are typically reported in "per mil" (‰, parts per thousand). These enrichments (δ) represent the ratio of heavy isotope to light isotope in the sample over the ratio of a standard. That is,
‰
Hydrogen isotope biogeochemistry
δ13C
Carbon has two stable isotopes, 12C and 13C, and one radioactive isotope, 14C.
The stable carbon isotope ratio, δ13C, is measured against Vienna Pee Dee Belemnite (VPDB). The stable carbon isotopes are fractionated primarily by photosynthesis (Faure, 2004). The 13C/12C ratio is also an indicator of paleoclimate: a change in the ratio in the remains of plants indicates a change in the amount of photosynthetic activity, and thus in how favorable the environment was for the plants. During photosynthesis, organisms using the C3 pathway show different enrichments compared to those using the C4 pathway, allowing scientists not only to distinguish organic matter from abiotic carbon, but also what type of photosynthetic pathway the organic matter was using. Occasional spikes in the global 13C/12C ratio have also been useful as stratigraphic markers for chemostratigraphy, especially during the Paleozoic.
The 14C ratio has been used to track ocean circulation, among other things.
Nitrogen has two stable isotopes, 14N and 15N. The ratio between these is measured relative to nitrogen in ambient air.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The aim of this course is to treat three of the major techniques for structural characterization of molecules: mass spectrometry, NMR, and X-ray techniques.
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
Explores methods for analyzing microbial communities, including FISH, PCR, stable isotopes, and single-cell genomics, to link functions to individual cells.
Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific atoms by their isotope. The reactant is then allowed to undergo the reaction. The position of the isotopes in the products is measured to determine the sequence the isotopic atom followed in the reaction or the cell's metabolic pathway.
The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundance of such stable isotopes can be measured experimentally (isotope analysis), yielding an isotope ratio that can be used as a research tool. Theoretically, such stable isotopes could include the radiogenic daughter products of radioactive decay, used in radiometric dating.
An isotopic signature (also isotopic fingerprint) is a ratio of non-radiogenic 'stable isotopes', stable radiogenic isotopes, or unstable radioactive isotopes of particular elements in an investigated material. The ratios of isotopes in a sample material are measured by isotope-ratio mass spectrometry against an isotopic reference material. This process is called isotope analysis. The atomic mass of different isotopes affect their chemical kinetic behavior, leading to natural isotope separation processes.
The oxygen isotope compositions of fossil biocalcites, such as foraminifera, bivalves, brachiopods, and belemnites have allowed for reconstructions of sea surface and deep ocean temperatures throughout the Phanerozoic and constitute the most important reco ...
EPFL2024
, , , ,
The two-step electron transfer during bacterial reduction of UVI to UIV is typically accompanied by mass-independent fractionation of the 238U and 235U isotopes, whereby the heavy isotope accumulates in the reduced product. However, the role of the UV inte ...
2024
Sorption of mercury (Hg) in soils is suggested to be predominantly associated with organic matter (OM). However, there is a growing collection of research that suggests that clay minerals and oxides are also important solid phases for the sorption of solu ...