The Debye sheath (also electrostatic sheath) is a layer in a plasma which has a greater density of positive ions, and hence an overall excess positive charge, that balances an opposite negative charge on the surface of a material with which it is in contact. The thickness of such a layer is several Debye lengths thick, a value whose size depends on various characteristics of plasma (e.g. temperature, density, etc.).
A Debye sheath arises in a plasma because the electrons usually have a temperature on the order of magnitude or greater than that of the ions and are much lighter. Consequently, they are faster than the ions by at least a factor of . At the interface to a material surface, therefore, the electrons will fly out of the plasma, charging the surface negative relative to the bulk plasma. Due to Debye shielding, the scale length of the transition region will be the Debye length . As the potential increases, more and more electrons are reflected by the sheath potential. An equilibrium is finally reached when the potential difference is a few times the electron temperature.
The Debye sheath is the transition from a plasma to a solid surface. Similar physics is involved between two plasma regions that have different characteristics; the transition between these regions is known as a double layer, and features one positive, and one negative layer.
Sheaths were first described by American physicist Irving Langmuir. In 1923 he wrote:
"Electrons are repelled from the negative electrode while positive ions are drawn towards it. Around each negative electrode there is thus a sheath of definite thickness containing only positive ions and neutral atoms. [..] Electrons are reflected from the outside surface of the sheath while all positive ions which reach the sheath are attracted to the electrode. [..] it follows directly that no change occurs in the positive ion current reaching the electrode. The electrode is in fact perfectly screened from the discharge by the positive ion sheath, and its potential cannot influence the phenomena occurring in the arc, nor the current flowing to the electrode.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
In plasmas and electrolytes, the Debye length (Debye radius or Debye–Hückel screening length), is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are increasingly electrically screened and the electric potential decreases in magnitude by 1/e. A Debye sphere is a volume whose radius is the Debye length. Debye length is an important parameter in plasma physics, electrolytes, and colloids (DLVO theory).
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
The Debye sheath is known to vanish completely in magnetised plasmas for a sufficiently small electron gyroradius and small angle between the magnetic field and the wall. This angle depends on the current onto the wall. When the Debye sheath vanishes, ther ...
A one-dimensional Vlasov-Poisson simulation code is employed to investigate the plasma sheath considering electron-induced secondary electron emission (SEE) and backscattering. The SEE coefficient is commonly treated as constant in a range of plasma simula ...
Aptamer-functionalized field-effect transistor (FET) biosensors enable detection of small-molecule targets in complex environments such as tissue and blood. Conventional FET-based platforms suffer from Debye screening in high ionic strength physiological e ...