The Debye sheath (also electrostatic sheath) is a layer in a plasma which has a greater density of positive ions, and hence an overall excess positive charge, that balances an opposite negative charge on the surface of a material with which it is in contact. The thickness of such a layer is several Debye lengths thick, a value whose size depends on various characteristics of plasma (e.g. temperature, density, etc.).
A Debye sheath arises in a plasma because the electrons usually have a temperature on the order of magnitude or greater than that of the ions and are much lighter. Consequently, they are faster than the ions by at least a factor of . At the interface to a material surface, therefore, the electrons will fly out of the plasma, charging the surface negative relative to the bulk plasma. Due to Debye shielding, the scale length of the transition region will be the Debye length . As the potential increases, more and more electrons are reflected by the sheath potential. An equilibrium is finally reached when the potential difference is a few times the electron temperature.
The Debye sheath is the transition from a plasma to a solid surface. Similar physics is involved between two plasma regions that have different characteristics; the transition between these regions is known as a double layer, and features one positive, and one negative layer.
Sheaths were first described by American physicist Irving Langmuir. In 1923 he wrote:
"Electrons are repelled from the negative electrode while positive ions are drawn towards it. Around each negative electrode there is thus a sheath of definite thickness containing only positive ions and neutral atoms. [..] Electrons are reflected from the outside surface of the sheath while all positive ions which reach the sheath are attracted to the electrode. [..] it follows directly that no change occurs in the positive ion current reaching the electrode. The electrode is in fact perfectly screened from the discharge by the positive ion sheath, and its potential cannot influence the phenomena occurring in the arc, nor the current flowing to the electrode.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
En physique des plasmas, la longueur de Debye, en référence au chimiste Peter Debye, est l'échelle de longueur sur laquelle les charges électriques (par exemple les électrons) écrantent le champ électrostatique dans un plasma ou un autre conducteur. Autrement dit, la longueur de Debye est la distance au-delà de laquelle une séparation significative des charges peut avoir lieu. La longueur de Debye apparait aussi dans la théorie des solutions d'électrolyte ; elle y définit la longueur sur laquelle les ions présents en solution font écran au champ électrique, généré par exemple par une paroi chargée ou un colloïde.
Couvre les phénomènes de collision et de transport, les phénomènes collectifs et les interactions ondes-particules en physique des plasmas.
Explore la théorie DLVO et le potentiel membranaire pour comprendre la stabilité colloïdale et les forces entre les surfaces chargées.
Couvre la définition et les propriétés du plasma, y compris l'ionisation et les effets collectifs.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Aptamer-functionalized field-effect transistor (FET) biosensors enable detection of small-molecule targets in complex environments such as tissue and blood. Conventional FET-based platforms suffer from Debye screening in high ionic strength physiological e ...
The Debye sheath is known to vanish completely in magnetised plasmas for a sufficiently small electron gyroradius and small angle between the magnetic field and the wall. This angle depends on the current onto the wall. When the Debye sheath vanishes, ther ...
A one-dimensional Vlasov-Poisson simulation code is employed to investigate the plasma sheath considering electron-induced secondary electron emission (SEE) and backscattering. The SEE coefficient is commonly treated as constant in a range of plasma simula ...