Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In engineering, an influence line graphs the variation of a function (such as the shear, moment etc. felt in a structural member) at a specific point on a beam or truss caused by a unit load placed at any point along the structure. Common functions studied with influence lines include reactions (forces that the structure's supports must apply for the structure to remain static), shear, moment, and deflection (Deformation). Influence lines are important in designing beams and trusses used in bridges, crane rails, conveyor belts, floor girders, and other structures where loads will move along their span. The influence lines show where a load will create the maximum effect for any of the functions studied. Influence lines are both scalar and additive. This means that they can be used even when the load that will be applied is not a unit load or if there are multiple loads applied. To find the effect of any non-unit load on a structure, the ordinate results obtained by the influence line are multiplied by the magnitude of the actual load to be applied. The entire influence line can be scaled, or just the maximum and minimum effects experienced along the line. The scaled maximum and minimum are the critical magnitudes that must be designed for in the beam or truss. In cases where multiple loads may be in effect, influence lines for the individual loads may be added together to obtain the total effect felt the structure bears at a given point. When adding the influence lines together, it is necessary to include the appropriate offsets due to the spacing of loads across the structure. For example, a truck load is applied to the structure. Rear axle, B, is three feet behind front axle, A, then the effect of A at x feet along the structure must be added to the effect of B at (x – 3) feet along the structure—not the effect of B at x feet along the structure. Many loads are distributed rather than concentrated. Influence lines can be used with either concentrated or distributed loadings.
Alain Nussbaumer, Pieter Christian Louter, Jagoda Cupac
Thomas Keller, Mário Alexandre De Jesus Garrido