Summary
In mathematics, the harmonic mean is one of several kinds of average, and in particular, one of the Pythagorean means. It is sometimes appropriate for situations when the average rate is desired. The harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of the given set of observations. As a simple example, the harmonic mean of 1, 4, and 4 is The harmonic mean H of the positive real numbers is defined to be It is the reciprocal of the arithmetic mean of the reciprocals, and vice versa: where the arithmetic mean is defined as The harmonic mean is a Schur-concave function, and dominated by the minimum of its arguments, in the sense that for any positive set of arguments, . Thus, the harmonic mean cannot be made arbitrarily large by changing some values to bigger ones (while having at least one value unchanged). The harmonic mean is also concave, which is an even stronger property than Schur-concavity. One has to take care to only use positive numbers though, since the mean fails to be concave if negative values are used. The harmonic mean is one of the three Pythagorean means. For all positive data sets containing at least one pair of nonequal values, the harmonic mean is always the least of the three means, while the arithmetic mean is always the greatest of the three and the geometric mean is always in between. (If all values in a nonempty dataset are equal, the three means are always equal to one another; e.g., the harmonic, geometric, and arithmetic means of {2, 2, 2} are all 2.) It is the special case M−1 of the power mean: Since the harmonic mean of a list of numbers tends strongly toward the least elements of the list, it tends (compared to the arithmetic mean) to mitigate the impact of large outliers and aggravate the impact of small ones. The arithmetic mean is often mistakenly used in places calling for the harmonic mean. In the speed example below for instance, the arithmetic mean of 40 is incorrect, and too big. The harmonic mean is related to the other Pythagorean means, as seen in the equation below.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.