Summary
Histocompatibility, or tissue compatibility, is the property of having the same, or sufficiently similar, alleles of a set of genes called human leukocyte antigens (HLA), or major histocompatibility complex (MHC). Each individual expresses many unique HLA proteins on the surface of their cells, which signal to the immune system whether a cell is part of the self or an invading organism. T cells recognize foreign HLA molecules and trigger an immune response to destroy the foreign cells. Histocompatibility testing is most relevant for topics related to whole organ, tissue, or stem cell transplants, where the similarity or difference between the donor's HLA alleles and the recipient's triggers the immune system to reject the transplant. The wide variety of potential HLA alleles lead to unique combinations in individuals and make matching difficult. The discovery of the MHC and role of histocompatibility in transplantation was a combined effort of many scientists in the 20th century. A genetic basis for transplantation rejection was proposed in a 1914 Nature paper by C.C. Little and Ernest Tyyzer, which showed that tumors transplanted between genetically identical mice grew normally, but tumors transplanted between non-identical mice were rejected and failed to grow. The role of the immune system in transplant reject was proposed by Peter Medawar, whose skin graft transplants in world war two victims showed that skin transplants between individuals had much higher rejection rates than self-transplants within an individual, and that suppressing the immune system delayed skin transplant rejection. Medawar shared the 1960 Nobel Prize in part for this work. In the 1930s and 1940s, George Snell and Peter Gorer individually isolated the genetic factors that when similar allowed transplantation between mouse strains, naming them H and antigen II respectively. These factors were in fact one and the same, and the locus was named H-2. Snell coined the term "histocompatibility" to describe the relationship between the H-2 cell-surface proteins and transplant acceptance.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.