Jet propulsion is the propulsion of an object in one direction, produced by ejecting a jet of fluid in the opposite direction. By Newton's third law, the moving body is propelled in the opposite direction to the jet. Reaction engines operating on the principle of jet propulsion include the jet engine used for aircraft propulsion, the pump-jet used for marine propulsion, and the rocket engine and plasma thruster used for spacecraft propulsion. Underwater jet propulsion is also used by several marine animals, including cephalopods and salps, with the flying squid even displaying the only known instance of jet-powered aerial flight in the animal kingdom.
Jet propulsion is produced by some reaction engines or animals when thrust is generated by a fast moving jet of fluid in accordance with Newton's laws of motion. It is most effective when the Reynolds number is high—that is, the object being propelled is relatively large and passing through a low-viscosity medium.
In animals, the most efficient jets are pulsed, rather than continuous, at least when the Reynolds number is greater than 6.
Specific impulse
Specific impulse (usually abbreviated Isp) is a measure of how effectively a rocket uses propellant or jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. If mass (kilogram, pound-mass, or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound-force) is used instead, then specific impulse has units of time (seconds). Multiplying flow rate by the standard gravity (g0) converts specific impulse from the mass basis to the weight basis.
A propulsion system with a higher specific impulse uses the mass of the propellant more effectively in creating forward thrust and, in the case of a rocket, less propellant needed for a given delta-v, per the Tsiolkovsky rocket equation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, amphibians, reptiles, birds, and mammals. Swimming evolved a number of times in unrelated lineages. Supposed jellyfish fossils occur in the Ediacaran, but the first free-swimming animals appear in the Early to Middle Cambrian.
An airbreathing jet engine (or ducted jet engine) is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet. All practical airbreathing jet engines heat the air by burning fuel.
A jet is a stream of fluid that is projected into a surrounding medium, usually from some kind of a nozzle, aperture or orifice. Jets can travel long distances without dissipating. Jet fluid has higher momentum compared to the surrounding fluid medium. In the case that the surrounding medium is assumed to be made up of the same fluid as the jet, and this fluid has a viscosity, the surrounding fluid is carried along with the jet in a process called entrainment.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
This course gives an introduction to production methods and manufacturing technologies used in microengineering. The focus is given on the understanding of physical phenomena underlying the processes,
Many aquatic animals propel themselves by flapping their tails. Leveraging a recently proposed snapping cantilever beam based on the concept of flexural tensegrity, we propose a bio-inspired propulsion device. The design comprises a segmental beam with hol ...
ELSEVIER2022
, ,
Spillways are a requirement for dams’ safety, mainly preventing overtopping during floods. A common spillway solution involves plunging jets, which dissipate a considerable flow energy in the plunge pool. Energy dissipation has to occur in a controlled man ...
An integrated energetic particle transport model has been constructed in JET plasmas constrained by experimental fast ion loss measurements. The model incorporates a synthetic fast ion loss detector identical to JET's thin-foil Faraday cup fast ion loss de ...