Résumé
Jet propulsion is the propulsion of an object in one direction, produced by ejecting a jet of fluid in the opposite direction. By Newton's third law, the moving body is propelled in the opposite direction to the jet. Reaction engines operating on the principle of jet propulsion include the jet engine used for aircraft propulsion, the pump-jet used for marine propulsion, and the rocket engine and plasma thruster used for spacecraft propulsion. Underwater jet propulsion is also used by several marine animals, including cephalopods and salps, with the flying squid even displaying the only known instance of jet-powered aerial flight in the animal kingdom. Jet propulsion is produced by some reaction engines or animals when thrust is generated by a fast moving jet of fluid in accordance with Newton's laws of motion. It is most effective when the Reynolds number is high—that is, the object being propelled is relatively large and passing through a low-viscosity medium. In animals, the most efficient jets are pulsed, rather than continuous, at least when the Reynolds number is greater than 6. Specific impulse Specific impulse (usually abbreviated Isp) is a measure of how effectively a rocket uses propellant or jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. If mass (kilogram, pound-mass, or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound-force) is used instead, then specific impulse has units of time (seconds). Multiplying flow rate by the standard gravity (g0) converts specific impulse from the mass basis to the weight basis. A propulsion system with a higher specific impulse uses the mass of the propellant more effectively in creating forward thrust and, in the case of a rocket, less propellant needed for a given delta-v, per the Tsiolkovsky rocket equation.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.