Concept

Predicate transformer semantics

Summary
Predicate transformer semantics were introduced by Edsger Dijkstra in his seminal paper "Guarded commands, nondeterminacy and formal derivation of programs". They define the semantics of an imperative programming paradigm by assigning to each statement in this language a corresponding predicate transformer: a total function between two predicates on the state space of the statement. In this sense, predicate transformer semantics are a kind of denotational semantics. Actually, in guarded commands, Dijkstra uses only one kind of predicate transformer: the well-known weakest preconditions (see below). Moreover, predicate transformer semantics are a reformulation of Floyd–Hoare logic. Whereas Hoare logic is presented as a deductive system, predicate transformer semantics (either by weakest-preconditions or by strongest-postconditions see below) are complete strategies to build valid deductions of Hoare logic. In other words, they provide an effective algorithm to reduce the problem of verifying a Hoare triple to the problem of proving a first-order formula. Technically, predicate transformer semantics perform a kind of symbolic execution of statements into predicates: execution runs backward in the case of weakest-preconditions, or runs forward in the case of strongest-postconditions. For a statement S and a postcondition R, a weakest precondition is a predicate Q such that for any precondition P, if and only if . In other words, it is the "loosest" or least restrictive requirement needed to guarantee that R holds after S. Uniqueness follows easily from the definition: If both Q and Q' are weakest preconditions, then by the definition so and so , and thus . We often use to denote the weakest precondition for statement S with repect to a postcondition R. We use T to denote the predicate that is everywhere true and F to denote the one that is everywhere false. We shouldn't at least conceptually confuse ourselves with a Boolean expression defined by some language syntax, which might also contain true and false as Boolean scalars.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.