Predicate transformer semantics were introduced by Edsger Dijkstra in his seminal paper "Guarded commands, nondeterminacy and formal derivation of programs". They define the semantics of an imperative programming paradigm by assigning to each statement in this language a corresponding predicate transformer: a total function between two predicates on the state space of the statement. In this sense, predicate transformer semantics are a kind of denotational semantics. Actually, in guarded commands, Dijkstra uses only one kind of predicate transformer: the well-known weakest preconditions (see below). Moreover, predicate transformer semantics are a reformulation of Floyd–Hoare logic. Whereas Hoare logic is presented as a deductive system, predicate transformer semantics (either by weakest-preconditions or by strongest-postconditions see below) are complete strategies to build valid deductions of Hoare logic. In other words, they provide an effective algorithm to reduce the problem of verifying a Hoare triple to the problem of proving a first-order formula. Technically, predicate transformer semantics perform a kind of symbolic execution of statements into predicates: execution runs backward in the case of weakest-preconditions, or runs forward in the case of strongest-postconditions. For a statement S and a postcondition R, a weakest precondition is a predicate Q such that for any precondition P, if and only if . In other words, it is the "loosest" or least restrictive requirement needed to guarantee that R holds after S. Uniqueness follows easily from the definition: If both Q and Q' are weakest preconditions, then by the definition so and so , and thus . We often use to denote the weakest precondition for statement S with repect to a postcondition R. We use T to denote the predicate that is everywhere true and F to denote the one that is everywhere false. We shouldn't at least conceptually confuse ourselves with a Boolean expression defined by some language syntax, which might also contain true and false as Boolean scalars.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
CS-550: Formal verification
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
Related publications (16)
Related concepts (2)
Hoare logic
Hoare logic (also known as Floyd–Hoare logic or Hoare rules) is a formal system with a set of logical rules for reasoning rigorously about the correctness of computer programs. It was proposed in 1969 by the British computer scientist and logician Tony Hoare, and subsequently refined by Hoare and other researchers. The original ideas were seeded by the work of Robert W. Floyd, who had published a similar system for flowcharts. The central feature of Hoare logic is the Hoare triple.
Static program analysis
In computer science, static program analysis (or static analysis) is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs during their execution. The term is usually applied to analysis performed by an automated tool, with human analysis typically being called "program understanding", program comprehension, or code review. In the last of these, software inspection and software walkthroughs are also used.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.