In physics and mathematics, a pseudotensor is usually a quantity that transforms like a tensor under an orientation-preserving coordinate transformation (e.g. a proper rotation) but additionally changes sign under an orientation-reversing coordinate transformation (e.g., an improper rotation), which is a transformation that can be expressed as a proper rotation followed by reflection. This is a generalization of a pseudovector. To evaluate a tensor or pseudotensor sign, it has to be contracted with some vectors, as many as its rank is, belonging to the space where the rotation is made while keeping the tensor coordinates unaffected (differently from what one does in the case of a base change). Under improper rotation a pseudotensor and a proper tensor of the same rank will have different sign which depends on the rank being even or odd. Sometimes inversion of the axes is used as an example of an improper rotation to see the behaviour of a pseudotensor, but it works only if vector space dimensions is odd otherwise inversion is a proper rotation without an additional reflection. There is a second meaning for pseudotensor (and likewise for pseudovector), restricted to general relativity. Tensors obey strict transformation laws, but pseudotensors in this sense are not so constrained. Consequently, the form of a pseudotensor will, in general, change as the frame of reference is altered. An equation containing pseudotensors which holds in one frame will not necessarily hold in a different frame. This makes pseudotensors of limited relevance because equations in which they appear are not invariant in form. Two quite different mathematical objects are called a pseudotensor in different contexts. The first context is essentially a tensor multiplied by an extra sign factor, such that the pseudotensor changes sign under reflections when a normal tensor does not. According to one definition, a pseudotensor P of the type is a geometric object whose components in an arbitrary basis are enumerated by indices and obey the transformation rule under a change of basis.