In geology, the crust is the outermost solid shell of a rocky planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase (solid crust vs. liquid mantle). The crusts of Earth, Mercury, Venus, Mars, Io, the Moon and other planetary bodies formed via igneous processes and were later modified by erosion, impact cratering, volcanism, and sedimentation. Most terrestrial planets have fairly uniform crusts. Earth, however, has two distinct types: continental crust and oceanic crust. These two types have different chemical compositions and physical properties and were formed by different geological processes. Abundance of elements in Earth's crust Planetary geologists divide crust into three categories based on how and when it formed. This is a planet's "original" crust. It forms from solidification of a magma ocean. Toward the end of planetary accretion, the terrestrial planets likely had surfaces that were magma oceans. As these cooled, they solidified into crust. This crust was likely destroyed by large impacts and re-formed many times as the Era of Heavy Bombardment drew to a close. The nature of primary crust is still debated: its chemical, mineralogic, and physical properties are unknown, as are the igneous mechanisms that formed them. This is because it is difficult to study: none of Earth's primary crust has survived to today. Earth's high rates of erosion and crustal recycling from plate tectonics has destroyed all rocks older than about 4 billion years, including whatever primary crust Earth once had. However, geologists can glean information about primary crust by studying it on other terrestrial planets. Mercury's highlands might represent primary crust, though this is debated. The anorthosite highlands of the Moon are primary crust, formed as plagioclase crystallized out of the Moon's initial magma ocean and floated to the top; however, it is unlikely that Earth followed a similar pattern, as the Moon was a water-less system and Earth had water.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MSE-234: Mechanical behaviour of materials
Ce cours est une introduction au comportement mécanique, à l'élaboration, à la structure et au cycle de vie des grandes classes de matériaux de structure (métaux, polymères, céramiques et composites)
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
CIVIL-448: Geophysics for engineers
le cours présente les principales méthodes géophysiques utilisées par les ingénieurs pour l'exploration et la surveillance des sites.
Related lectures (26)
Resource-Constrained World: Metals, Energy, and Sustainability
Explores challenges in a resource-constrained world, focusing on metals, energy, and sustainability, including recycling rates and low-tech solutions.
Metals Recycling & Energy Model
Explores the challenges and energy aspects of metal recycling, including the composition of Earth's crust, extraction methods, and energy requirements for aluminum production.
Metals and Alloys: Properties and Applications
Explores the properties, extraction, and applications of metals and alloys, including historical evolution and recycling rates.
Show more
Related publications (32)

Fluid flow through microcracked and fractured granitic reservoirs

Marie Estelle Solange Violay, Lucille Jocelyne Nadine Carbillet, Michael Heap

The permeability of crustal rocks and rock-masses dictates the efficiency of hydrothermal circulation and therefore the productivity of geothermal resources. In this study, we find by monitoring P-wave velocity that thermal microcracking in Lanhélin granit ...
2023

On the Scale Dependence in the Dynamics of Frictional Rupture

Marie Estelle Solange Violay, Mathias Alexandre David Lebihain, François Xavier Thibault Passelègue, Federica Paglialunga

When an earthquake nucleates in the earth crust, the potential energy accumulated during the inter-seismic period is released into breakdown work, heat energy and radiated energy. Often the breakdown work is considered a seismological equivalent of the fra ...
2021

On the effects of fluid pressure variations on rock-mass and fault mechanical behaviour

Corentin Jean-Marie Rémi Noël

In the past 20 years, the growing interest in deep geo-reservoirs for purposes such as carbon storage, waste water disposal, or geothermal energy exploitation have led to large-volume fluid injections into the upper continental crust. These fluid injection ...
EPFL2021
Show more
Related concepts (26)
Mantle (geology)
A mantle is a layer inside a planetary body bounded below by a core and above by a crust. Mantles are made of rock or ices, and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone differentiation by density. All terrestrial planets (including Earth), a number of asteroids, and some planetary moons have mantles. Earth's mantle The Earth's mantle is a layer of silicate rock between the crust and the outer core. Its mass of 4.
Mars
Mars is the fourth planet and the furthest terrestrial planet from the Sun. The reddish color of its surface is due to finely grained iron(III) oxide dust in the soil, giving it the nickname "the Red Planet". Mars's radius is second smallest among the planets in the Solar System at . The Martian dichotomy is visible on the surface: on average, the terrain on Mars's northern hemisphere is flatter and lower than its southern hemisphere. Mars has a thin atmosphere made primarily of carbon dioxide and two irregularly shaped natural satellites: Phobos and Deimos.
Martian meteorite
A Martian meteorite is a rock that formed on Mars, was ejected from the planet by an impact event, and traversed interplanetary space before landing on Earth as a meteorite. , 277 meteorites had been classified as Martian, less than half a percent of the 72,000 meteorites that have been classified. The largest complete, uncut Martian meteorite, Taoudenni 002, was recovered in Mali in early 2021. It weighs 14.5 kilograms (32 pounds) and is on display at the Maine Mineral & Gem Museum.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.