In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density, heat-flow density or heat flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m2). It has both a direction and a magnitude, and so it is a vector quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small. Heat flux is often denoted , the subscript q specifying heat flux, as opposed to mass or momentum flux. Fourier's law is an important application of these concepts. Thermal conduction#Fourier's law For most solids in usual conditions, heat is transported mainly by conduction and the heat flux is adequately described by Fourier's law. where is the thermal conductivity. The negative sign shows that heat flux moves from higher temperature regions to lower temperature regions. The multi-dimensional case is similar, the heat flux goes "down" and hence the temperature gradient has the negative sign: where is the gradient operator. Heat flux sensor The measurement of heat flux can be performed in a few different manners. A commonly known, but often impractical, method is performed by measuring a temperature difference over a piece of material with known thermal conductivity. This method is analogous to a standard way to measure an electric current, where one measures the voltage drop over a known resistor. Usually this method is difficult to perform since the thermal resistance of the material being tested is often not known. Accurate values for the material's thickness and thermal conductivity would be required in order to determine thermal resistance. Using the thermal resistance, along with temperature measurements on either side of the material, heat flux can then be indirectly calculated. A second method of measuring heat flux is by using a heat flux sensor, or heat flux transducer, to directly measure the amount of heat being transferred to/from the surface that the heat flux sensor is mounted to.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (18)
ENV-425: Limnology
Focus is on lakes, rivers and reservoirs as aquatic systems. Specific is the quantitative analyse (incl. exercises) of physical, biogeochemical and sedimentological processes. The goal is to understan
MICRO-330: Sensors
Principes physiques et électronique utilisés dans les capteurs. Applications des capteurs.
ME-465: Advanced heat transfer
The course will deepen the fundamentals of heat transfer. Particular focus will be put on radiative and convective heat transfer, and computational approaches to solve complex, coupled heat transfer p
Show more
Related lectures (121)
Radiative Exchange: Specular View Factors
Covers specular view factors, radiative exchange, energy transfer, and numerical integration methods in thermal radiation.
Monte Carlo Method: Thermal Radiation
Explores the Monte Carlo method for thermal radiation, covering radiative energy bundles, flux, surface relations, view factors, and radiative exchange computation.
Thermal Equivalent Circuits: Basics
Explores thermal equivalent circuits, heat conduction, 1D heat flux, steady-state, transient state, and thermal-electrical system analogy.
Show more
Related publications (263)
Related concepts (7)
Heat
In thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself. An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat.
Thermoelectric effect
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side.
Flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.