Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.
The word flux comes from Latin: fluxus means "flow", and fluere is "to flow". As fluxion, this term was introduced into differential calculus by Isaac Newton.
The concept of heat flux was a key contribution of Joseph Fourier, in the analysis of heat transfer phenomena. His seminal treatise Théorie analytique de la chaleur (The Analytical Theory of Heat), defines fluxion as a central quantity and proceeds to derive the now well-known expressions of flux in terms of temperature differences across a slab, and then more generally in terms of temperature gradients or differentials of temperature, across other geometries. One could argue, based on the work of James Clerk Maxwell, that the transport definition precedes the definition of flux used in electromagnetism. The specific quote from Maxwell is:
In the case of fluxes, we have to take the integral, over a surface, of the flux through every element of the surface. The result of this operation is called the surface integral of the flux. It represents the quantity which passes through the surface.
According to the transport definition, flux may be a single vector, or it may be a vector field / function of position. In the latter case flux can readily be integrated over a surface. By contrast, according to the electromagnetism definition, flux is the integral over a surface; it makes no sense to integrate a second-definition flux for one would be integrating over a surface twice. Thus, Maxwell's quote only makes sense if "flux" is being used according to the transport definition (and furthermore is a vector field rather than single vector).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k. Heat spontaneously flows along a temperature gradient (i.e. from a hotter body to a colder body). For example, heat is conducted from the hotplate of an electric stove to the bottom of a saucepan in contact with it.
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region inside the surface.
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Covers the concept of Green function and Laplacian formulas in mathematics.
Covers surface integrals with a focus on regular parametrization and the importance of understanding the normal vector.
Explores diffusion from a macroscopic perspective, emphasizing the derivation of the diffusion equation through mass conservation and fixed flux law.
The heat flux mitigation during the thermal quench (TQ) by the shattered pellet injection (SPI) is one of the major elements of disruption mitigation strategy for ITER. It's efficiency greatly depends on the SPI and the target plasma parameters, and is ult ...
This paper establishes a mean-field equation set and an energy theorem to provide a theoretical basis in view of the development of self-consistent, physics-based turbulent transport models for mean-field transport codes. A rigorous averaging procedure ide ...
Local gyrokinetic simulations are used to model turbulent transport for the first time in a representative high-performance plasma discharge projected for the new JT-60SA tokamak. The discharge features a double-null separatrix, 41 MW of combined neutral b ...