Concept

Theta solvent

Summary
In a polymer solution, a theta solvent (or θ solvent) is a solvent in which polymer coils act like ideal chains, assuming exactly their random walk coil dimensions. Therefore, the Mark–Houwink equation exponent is 1/2 in a theta solvent. Thermodynamically, the excess chemical potential of mixing between a polymer and a theta solvent is zero. Physical interpretation The conformation assumed by a polymer chain in dilute solution can be modeled as a random walk of monomer subunits using a freely jointed chain model. However, this model does not account for steric effects. Real polymer coils are more closely represented by a self-avoiding walk because conformations in which different chain segments occupy the same space are not physically possible. This excluded volume effect causes the polymer to expand. Chain conformation is also affected by solvent quality. The intermolecular interactions between polymer chain segments and coordinated solvent molecules have an
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading