Concept

Double-negation translation

In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic. Typically it is done by translating formulas to formulas which are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translations include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic. The easiest double-negation translation to describe comes from Glivenko's theorem, proved by Valery Glivenko in 1929. It maps each classical formula φ to its double negation ¬¬φ. Glivenko's theorem states: If φ is a propositional formula, then φ is a classical tautology if and only if ¬¬φ is an intuitionistic tautology. Glivenko's theorem implies the more general statement: If T is a set of propositional formulas and φ a propositional formula, then T ⊢ φ in classical logic if and only if T ⊢ ¬¬φ in intuitionistic logic. In particular, a set of propositional formulas is intuitionistically consistent if and only if it is classically satisfiable. The Gödel–Gentzen translation (named after Kurt Gödel and Gerhard Gentzen) associates with each formula φ in a first-order language another formula φN, which is defined inductively: If φ is atomic, then φN is ¬¬φ as above, but furthermore (φ ∨ θ)N is ¬(¬φN ∧ ¬θN) (∃x φ)N is ¬(∀x ¬φN) and otherwise (φ ∧ θ)N is φN ∧ θN (φ → θ)N is φN → θN (¬φ)N is ¬φN (∀x φ)N is ∀x φN This translation has the property that φN is classically equivalent to φ. But in intuitionistic first-order logic, neither direction is necessarily provable. Troelstra and van Dalen (1988, Ch. 2, Sec. 3) give a description, due to Leivant, of formulas that do imply their Gödel–Gentzen translation. Due to constructive equivalences, there are several alternative definitions of the translation. For example, a valid De Morgan's law allows one to rewrite a negated disjunction.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.