Concept

Double-negation translation

In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic. Typically it is done by translating formulas to formulas which are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translations include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic. The easiest double-negation translation to describe comes from Glivenko's theorem, proved by Valery Glivenko in 1929. It maps each classical formula φ to its double negation ¬¬φ. Glivenko's theorem states: If φ is a propositional formula, then φ is a classical tautology if and only if ¬¬φ is an intuitionistic tautology. Glivenko's theorem implies the more general statement: If T is a set of propositional formulas and φ a propositional formula, then T ⊢ φ in classical logic if and only if T ⊢ ¬¬φ in intuitionistic logic. In particular, a set of propositional formulas is intuitionistically consistent if and only if it is classically satisfiable. The Gödel–Gentzen translation (named after Kurt Gödel and Gerhard Gentzen) associates with each formula φ in a first-order language another formula φN, which is defined inductively: If φ is atomic, then φN is ¬¬φ as above, but furthermore (φ ∨ θ)N is ¬(¬φN ∧ ¬θN) (∃x φ)N is ¬(∀x ¬φN) and otherwise (φ ∧ θ)N is φN ∧ θN (φ → θ)N is φN → θN (¬φ)N is ¬φN (∀x φ)N is ∀x φN This translation has the property that φN is classically equivalent to φ. But in intuitionistic first-order logic, neither direction is necessarily provable. Troelstra and van Dalen (1988, Ch. 2, Sec. 3) give a description, due to Leivant, of formulas that do imply their Gödel–Gentzen translation. Due to constructive equivalences, there are several alternative definitions of the translation. For example, a valid De Morgan's law allows one to rewrite a negated disjunction.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.