Alexandrov topologyIn topology, an Alexandrov topology is a topology in which the intersection of every family of open sets is open. It is an axiom of topology that the intersection of every finite family of open sets is open; in Alexandrov topologies the finite restriction is dropped. A set together with an Alexandrov topology is known as an Alexandrov-discrete space or finitely generated space. Alexandrov topologies are uniquely determined by their specialization preorders.
Excluded point topologyIn mathematics, the excluded point topology is a topology where exclusion of a particular point defines openness. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is then the excluded point topology on X. There are a variety of cases which are individually named: If X has two points, it is called the Sierpiński space. This case is somewhat special and is handled separately.
List of topologiesThe following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Discrete topology − All subsets are open. Indiscrete topology, chaotic topology, or Trivial topology − Only the empty set and its complement are open.
Locally connected spaceIn topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space.
Ultraconnected spaceIn mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint. Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected. Every ultraconnected space is path-connected (but not necessarily arc connected). If and are two points of and is a point in the intersection , the function defined by if , and if , is a continuous path between and .
Sierpiński spaceIn mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Hyperconnected spaceIn the mathematical field of topology, a hyperconnected space or irreducible space is a topological space X that cannot be written as the union of two proper closed sets (whether disjoint or non-disjoint). The name irreducible space is preferred in algebraic geometry. For a topological space X the following conditions are equivalent: No two nonempty open sets are disjoint. X cannot be written as the union of two proper closed sets. Every nonempty open set is dense in X. The interior of every proper closed set is empty.
Particular point topologyIn mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology.
Constant functionIn mathematics, a constant function is a function whose (output) value is the same for every input value. For example, the function y(x) = 4 is a constant function because the value of y(x) is 4 regardless of the input value x (see image). As a real-valued function of a real-valued argument, a constant function has the general form y(x) = c or just y = c. Example: The function y(x) = 2 or just y = 2 is the specific constant function where the output value is c = 2. The domain of this function is the set of all real numbers R.
Path (topology)In mathematics, a path in a topological space is a continuous function from the closed unit interval into Paths play an important role in the fields of topology and mathematical analysis. For example, a topological space for which there exists a path connecting any two points is said to be path-connected. Any space may be broken up into path-connected components. The set of path-connected components of a space is often denoted One can also define paths and loops in pointed spaces, which are important in homotopy theory.