Concepts associés (16)
Topologie d'Alexandroff
En mathématiques, une topologie d'Alexandroff est une topologie pour laquelle l'intersection d'une famille quelconque d'ouverts est un ouvert (et pas seulement l'intersection d'une famille finie d'ouverts). Cette notion a été introduite en 1937 par Pavel Alexandroff. Un espace topologique vérifie cette propriété si et seulement si sa topologie est cohérente avec ses sous-, c'est pourquoi un tel espace est aussi appelé espace finiment engendré. Les topologies d'Alexandroff sur un ensemble X sont en bijection avec les préordres sur X.
Excluded point topology
In mathematics, the excluded point topology is a topology where exclusion of a particular point defines openness. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is then the excluded point topology on X. There are a variety of cases which are individually named: If X has two points, it is called the Sierpiński space. This case is somewhat special and is handled separately.
List of topologies
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Discrete topology − All subsets are open. Indiscrete topology, chaotic topology, or Trivial topology − Only the empty set and its complement are open.
Espace localement connexe
En mathématiques, plus précisément en topologie, un espace localement connexe est un espace topologique pouvant être décrit à l’aide de ses ouverts connexes. En topologie, on dit qu’un espace est connexe lorsqu’il est fait « d’une seule pièce ». La question naturelle qui suit est de savoir si tout espace topologique peut être décrit comme la réunion disjointe (dans la catégorie des espaces topologiques) de ses composantes connexes ; en d’autres termes, peut-on considérer que lorsqu’on connait toutes les « pièces » d’un espace topologique, on sait tout de cet espace ? Une condition nécessaire et suffisante pour cela est que toutes les composantes connexes soient ouvertes.
Ultraconnected space
In mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint. Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected. Every ultraconnected space is path-connected (but not necessarily arc connected). If and are two points of and is a point in the intersection , the function defined by if , and if , is a continuous path between and .
Topologie de Sierpiński
In mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Espace topologique irréductible
En topologie, un espace irréductible est un espace topologique non vide qui ne peut pas se décomposer en (c'est-à-dire s'écrire comme réunion de) deux parties fermées strictement plus petites. Ce type d'espaces apparaît (et est utilisé) surtout en géométrie algébrique, où l'irréductibilité est une des propriétés topologiques basiques.
Particular point topology
In mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology.
Fonction constante
vignette|Graphique représentant la fonction constante f(x)=2. En mathématiques, une fonction constante est une fonction qui ne prend qu'une seule valeur, indépendamment de sa variable. En physique, une grandeur peut être fonction constante d'une autre lorsque les variations de la seconde ne perturbent pas la première. Une fonction est constante si et seulement si son est réduite à un singleton. Une fonction constante d'une variable réelle est représentée par une droite parallèle à l'axe des abscisses.
Chemin (topologie)
En mathématiques, notamment en analyse complexe et en topologie, un chemin est la modélisation d'une succession continue de points entre un point initial et un point final. On parle aussi de chemin orienté. Soit X un espace topologique. On appelle chemin ou arc sur X toute application continue . Le point initial du chemin est f(0) et le point final est f(1). Ces deux points constituent les extrémités du chemin. Lorsque A désigne le point initial et B le point final du chemin (cf.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.