Karen ScrivenerDe nationalité anglaise, Karen Scrivener est née en 1958. Au cours de sa carrière, ses travaux et sa recherche traitaient des domaines suivants: Identification du développement microstucturale pendant l'hydratation du ciment. Elaboration d'une approche multitechnique pour étudier la microstucture des ciments et bétons, avec accent sur la quantification par analyse des images d'électrons retrodiffusés. Caractérisation de l'auréole de transition de la pâte de ciment autour des granulats. Compréhension des processus de dégardation des bétons, en particulier le gonflement lié à la formation de l'éttringite retardée dans les bétons étuvés.
Roland LogéRoland Logé is an associate professor at EPFL, with a primary affiliation to the Materials Institute, and a secondary affiliation to the Microengineering Institute.
After graduating in 1994 at UCL (Belgium) in Materials Engineering, he earned a Master of Science in Mechanics in 1995, at UCSB Santa Barbara (USA). He received his PhD at Mines Paristech-CEMEF (France) in 1999, where he specialized in metal forming and associated microstructure evolutions. After a postdoc at Cornell University (USA) between 1999 and 2001, he entered CNRS in France.
In 2008, he was awarded the ALCAN prize from the French Academy of Sciences, together with Yvan Chastel.
In 2009 he became head of the Metallurgy-Structure-Rheology research group at CEMEF.
In 2011, he launched a “Groupement de Recherche” (GDR), funded by CNRS, networking most of the researchers in France involved in recrystallization and grain growth.
In 2013, he became Research Director at CNRS.
In March 2014 he joined EPFL as the head of the Laboratory of Thermomechanical Metallurgy.
Paul BowenDr. P. Bowen after gaining his BSc in Physics at Imperial College (UK), he obtained his Ph.D. in Physical Chemistry in the field of catalysis from the University of Cambridge, UK, in 1982, He then worked at the BP Research Centre, Sunbury, UK, for 4 years in applied surface sciences before moving to Switzerland and EPFL in 1987. He has been at the Powder Technology Laboratory, in the Materials Institute since its conception in 1988. He has over 190 publications and has written an undergraduate book on ceramic synthesis and processing. Education: 1976-1979 Imperial College of Science and Technology, University of London. B.Sc. Honours in Physics. 1979-1982 Department of Physical Chemistry, University of Cambridge. Certificate of Postgraduate Studies in Chemistry. Thesis: A Mössbauer Study of Some Clay Minerals and their Surfaces. Ph.D. in Physical Chemistry. Thesis: An Iron-57 and Tin-119 Mössbauer Spectroscopic Study of Some Graphite Intercalation Compounds and Carbon Supported Iron Catalysts. Professional Experience: 1983-1986 Research Scientist (Physical Chemist), New Technology Division, British Petroleum Company plc, BP Research Centre, Sunbury on Thames, Middlesex TW16 7LN, England. 1987-1988 Engineer, Ceramics Laboratory, Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, CH - 1015 Lausanne, Switzerland. 1988-2008 Research Associate/lecturer, Powder Technology Laboratory (Present) Institute des Matériaux, Ecole Polytechnique Fédérale de Lausanne, CH - 1015 Lausanne, Switzerland. 1988- 2015 Maitre DEnsiegnement et Recherche (Lecturer & Researcher), Powder Technology Laboratory, Institute des Matériaux, Ecole Polytechnique Fédérale de Lausanne,CH - 1015 Lausanne, Switzerland 2015 – present Adjunct Professor (Professeur Titulaire), Powder Technology Laboratory (LTP), Materials Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH - 1015 Lausanne, Switzerland
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
Andreas MortensenAndreas Mortensen is currently Professor and Director of the Institute of Materials at the Swiss Federal Institute of Technology in Lausanne (EPFL), where he heads the Laboratory for Mechanical Metallurgy. He joined the faculty of EPFL 1997 after ten years, from 1986 to 1996, as a member of the faculty of the Department of Materials Science and Engineering at the Massachusetts Institute of Technology, where he held the successive titles of ALCOA Assistant Professor, Associate Professor, and Professor. His research is focussed on the processing, microstructural development and mechanical behavior of advanced metallic materials with particular focus on metal matrix composites and metal foams, on infiltration processing and capillarity, and on damage and fracture in metallic materials. He is author or co-author of two monographs, around one hundred and eighty scientific or technical publications and twelve patents. Born in San Francisco in 1957, of dual (Danish and US) nationality, Andreas Mortensen graduated in 1980 from the Ecole Nationale Supérieure des Mines de Paris with a Diplôme dIngénieur Civil, and earned his Ph.D. in the Department of Materials Science and Engineering at MIT in 1986. Besides his academic employment, he was a postdoctoral researcher at Nippon Steel during part of 1986, and was invited professor at the Ecole des Mines in Paris during the academic year 1995 to 1996. He is a member of the editorial committee of International Materials Reviews and has co-edited four books. He is a Fellow of ASM, a recipient of the Howe Medal and the Grossman Award of the American Society of Metals, was awarded the Péchiney Prize by the French Academy of Sciences and the Res Metallica Chair from the Katholieke Universiteit Leuven, received three EPFL teaching awards, is one of ISIs Highly Cited authors for Materials Science since 2002 and was awarded an ERC advanced grant in 2012.
Philippe SpätigPhilippe Spätig is currently Adjunct Professor at EPFL in the School of Basic Sciences, in the Laboratory of Reactor Physics and Systems Behaviours. He obtained his diploma of Engineer Physicist at EPFL in 1991 and his PhD at EPFL in 1995 on the role of thermal activation in the plasticity of the intermetallic Ni3Al. From 1995 to 1997, he worked as postdoc in the Materials Group of the Center for Research in Plasma Physics at EPFL, studying the effects of high-energy proton irradiation on alloys and pure metals. He then moved to the University of California Santa Barbara and spent two years in the group of Professor G.R. Odette, working on fracture mechanics of ferritic structural steels. He joined again the Materials Group of the Center for Research in Plasma Physics at EPFL in 2000 and worked in this group until the end of 2012. His research was focused on irradiation hardening and embrittlement of steels, as well as on the development of oxide dispersion strengthened steels. He also worked and developed experimental and analytical small specimen test techniques to reliably extract mechanical properties from limited material volume. In 2013, he joined the Laboratory for Nuclear Materials at Paul Scherrer Institute, while being associated with the Laboratory for Reactor Physics and System Behaviours at EPFL. Since then he mainly works on environmentally-assisted fatigue and fracture on austenitic and pressure vessel steels, where the effects of light water reactor environment on mechanical properties are investigated.
Peter RyserDr. Peter Ryser is a Professor Emeritus at the Swiss Federal Institute of Technology in Lausanne. He has over three decades of research and teaching experience from various corporate and academic institutions. He was previously a Director at Siemens Building Technologies where he was responsible for R&D, product innovation and patents. Dr. Ryser has a Ph.D. in applied Physics from the University of Geneva, a Masters degree in Experimental Physics and an MBA.
Jan Van HerleBorn in Antwerp, Belgium. In Switzerland since 1983. Became Swiss citizen in 2004 out of conviction of principles of democracy and bottom-up participation. No double nationality. Village Council Member for 2 five-year mandates in 2006-2016.
1987 : Chemist from Basel University (CH).
1988 : Post-graduate IT diploma from Basel Engineering School.
1989 : Industry internship ABB Baden (CH).
1990-1993 : PhD Thesis EPFL, on Solid Oxide Fuel Cell cathode reaction mechanisms.
1994-1995 : Japanese Postdoctoral Fellowship in Tsukuba, Japan, on ceramic powders.
1995-2000 : Researcher at EPFL, Dpt. Chemistry : project responsible in PPM2 (materials), FP4-BriteEuram, NEDO (Japan), Swiss Gas Union (CH, oxygen membranes).
1998-2000 : Masters in Energy Technology, EPFL.
2000 : Cofounder of HTceramix SA (EPFL spin-off), now based in Yverdon (14 employees). Taken over by SOLIDpower in 2007, now 250 employees with 70 MCHF raised.
2000 : 1st Assistant and lecturer at LENI (STI-IGM) : fuel cell group responsible, projects on biogas (Federal Energy Office), woodgas (CCEM), fuel cell stacking (CTI, FP6, FNS), ceramic separation membranes (COST, FNS), microtubes (STI Seed), stability/lifetime/reliability in fuel cells (Electricité de France, swisselectric research). Currently 4 Ph D theses ongoing, 14 theses concluded, of which 5 colateral with SB and IMX. M.E.R. since Nov 2008.
Total funding raised so far >18 MCHF (50% as main applicant; 30% outside CH; 20% industry).
Scientific output : >135 peer-reviewed publications, >120 conference papers, 40 invited presentations (8 keynotes), >70 granted proposals.
Fluent in 5 languages (Dutch, French, German ( Swiss-german), English, Spanish).
Nava SetterNava Setter completed MSc in Civil Engineering in the Technion (Israel) and PhD in Solid State Science in Penn. State University (USA) (1980). After post-doctoral work at the Universities of Oxford (UK) and Geneva (Switzerland), she joined an R&D institute in Haifa (Israel) where she became the head of the Electronic Ceramics Lab (1988). She began her affiliation with EPFL in 1989 as the Director of the Ceramics Laboratory, becoming Full Professor of Materials Science and Engineering in 1992. She had been Head of the Materials Department in the past and more recently has served as the Director of the Doctoral School for Materials.
Research at the Ceramics Laboratory, which Nava Setter directs, concerns the science and technology of functional ceramics focusing on piezoelectric and related materials: ferroelectrics, dielectrics, pyroelectrics and also ferromagnetics. The work includes fundamental and applied research and covers the various scales from the atoms to the final devices. Emphasis is given to micro- and nano-fabrication technology with ceramics and coupled theoretical and experimental studies of the functioning of ferroelectrics.
Her own research interests include ferroelectrics and piezoelectrics: in particular the effects of interfaces, finite-size and domain-wall phenomena, as well as structure-property relations and the pursuit of new applications. The leading thread in her work over the years has been the demonstration of how basic or fundamental concepts in materials - particularly ferroelectrics - can be utilized in a new way and/or in new types of devices. She has published over 450 scientific and technical papers.
Nava Setter is a Fellow of the Swiss Academy of Technical Sciences, the Institute of Electrical and Electronic Engineers (IEEE), and the World Academy of Ceramics. Among the awards she received are the Swiss-Korea Research Award, the ISIF outstanding achievement award, and the Ferroelectrics-IEEE recognition award. In 2010 her research was recognized by the European Union by the award of an ERC Advanced Investigator Grant. Recently she received the IEEE-UFFC Achievement Award (2011),the W.R. Buessem Award(2011), the Robert S. Sosman Award Lecture (American Ceramics Society) (2013), and the American Vacuum Society Recognition for Excellence in Leadership (2013).