Concept

Root test

Summary
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one. It is particularly useful in connection with power series. The root test was developed first by Augustin-Louis Cauchy who published it in his textbook Cours d'analyse (1821). Thus, it is sometimes known as the Cauchy root test or Cauchy's radical test. For a series the root test uses the number where "lim sup" denotes the limit superior, possibly +∞. Note that if converges then it equals C and may be used in the root test instead. The root test states that: if C < 1 then the series converges absolutely, if C > 1 then the series diverges, if C = 1 and the limit approaches strictly from above then the series diverges, otherwise the test is inconclusive (the series may diverge, converge absolutely or converge conditionally). There are some series for which C = 1 and the series converges, e.g. , and there are others for which C = 1 and the series diverges, e.g. . This test can be used with a power series where the coefficients cn, and the center p are complex numbers and the argument z is a complex variable. The terms of this series would then be given by an = cn(z − p)n. One then applies the root test to the an as above. Note that sometimes a series like this is called a power series "around p", because the radius of convergence is the radius R of the largest interval or disc centred at p such that the series will converge for all points z strictly in the interior (convergence on the boundary of the interval or disc generally has to be checked separately). A corollary of the root test applied to such a power series is the Cauchy–Hadamard theorem: the radius of convergence is exactly taking care that we really mean ∞ if the denominator is 0. The proof of the convergence of a series Σan is an application of the comparison test.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.