Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature. The term semantic similarity is often confused with semantic relatedness. Semantic relatedness includes any relation between two terms, while semantic similarity only includes "is a" relations.
For example, "car" is similar to "bus", but is also related to "road" and "driving".
Computationally, semantic similarity can be estimated by defining a topological similarity, by using ontologies to define the distance between terms/concepts. For example, a naive metric for the comparison of concepts ordered in a partially ordered set and represented as nodes of a directed acyclic graph (e.g., a taxonomy), would be the shortest-path linking the two concept nodes. Based on text analyses, semantic relatedness between units of language (e.g., words, sentences) can also be estimated using statistical means such as a vector space model to correlate words and textual contexts from a suitable text corpus. The evaluation of the proposed semantic similarity / relatedness measures are evaluated through two main ways. The former is based on the use of datasets designed by experts and composed of word pairs with semantic similarity / relatedness degree estimation. The second way is based on the integration of the measures inside specific applications such as information retrieval, recommender systems, natural language processing, etc.
The concept of semantic similarity is more specific than semantic relatedness, as the latter includes concepts as antonymy and meronymy, while similarity does not. However, much of the literature uses these terms interchangeably, along with terms like semantic distance.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
The Human Language Technology (HLT) course introduces methods and applications for language processing and generation, using statistical learning and neural networks.
Taxonomy is the practice and science of categorization or classification. A taxonomy (or taxonomical classification) is a scheme of classification, especially a hierarchical classification, in which things are organized into groups or types. Among other things, a taxonomy can be used to organize and index knowledge (stored as documents, articles, videos, etc.), such as in the form of a library classification system, or a search engine taxonomy, so that users can more easily find the information they are searching for.
Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text (the distributional hypothesis).
Word2vec is a technique for natural language processing (NLP) published in 2013. The word2vec algorithm uses a neural network model to learn word associations from a large corpus of text. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. As the name implies, word2vec represents each distinct word with a particular list of numbers called a vector.
The archive of science is a place where scientific practices are sedimented in the form of drafts, protocols of rejected hypotheses and failed experiments, obsolete instruments, outdated visualizations and other residues. Today, just as science goes more a ...
Surrogate-based optimization is widely used for aerodynamic shape optimization, and its effectiveness depends on representative sampling of the design space. However, traditional sampling methods are hard-pressed to effectively sample high-dimensional desi ...
We discover alignments of views between interest groups (lobbies) and members of the European Parliament (MEPs) by automatically analyzing their texts. Specifically, we do so by collecting novel datasets of lobbies’ position papers and MEPs’ speeches, and ...