Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The patch-clamp technique is today the most well-established method for recording electrical activity from individual neurons or their subcellular compartments. Nevertheless, achieving stable recordings, even from individual cells, remains a time-consuming ...
Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical development and aging processes. A robust and widely implemented ...
Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures resp ...
Objective Long-term automatic detection of focal seizures remains one of the major challenges in epilepsy due to the unacceptably high number of false alarms from state-of-the-art methods. Our aim was to investigate to what extent a new patient-specific ap ...
Micro-nanotechnology based multielectrode arrays have led to remarkable progress in the field of transmembrane voltage recordings of excitable cells. However, electrode geometries alone have failed to produce a cell-electrode interface that is sufficiently ...
Microelectrode arrays (MEAs) are employed to study extracellular electrical activity in neuronal tissues. Nevertheless, commercially available MEAs provide a limited number of recording sites and do not allow a precise identification of the spatio-temporal ...
Microelectrode arrays (MEAs) are employed to study extracellular electrical activity in neuronal tissues. Nevertheless, commercially available MEAs provide a limited number of recording sites and do not allow a precise identification of the spatio-temporal ...
Minimally invasive monitoring of the electrical activity of specific cortical areas using implantable microsystems offers the promise of diagnosing neurological diseases, as well as detecting and identifying neural activity patterns which are specific to a ...
Brain-machine interfaces hold promise for restoring basic functions such as movement or speech for severely disabled patients, as well as for controlling neuroprosthetic devices for amputees. One of the major challenges of clinically viable neuroprostheses ...
The analysis of strong and weak motion recordings in existing structures is critical for understanding both the damaging process during earthquakes and their structural behavior. The time-frequency representation is one of the existing methods to get infor ...