Pafnuty Lvovich Chebyshev (Пафну́тий Льво́вич Чебышёв) ( – ) was a Russian mathematician and considered to be the founding father of Russian mathematics. Chebyshev is known for his fundamental contributions to the fields of probability, statistics, mechanics, and number theory. A number of important mathematical concepts are named after him, including the Chebyshev inequality (which can be used to prove the weak law of large numbers), the Bertrand–Chebyshev theorem, Chebyshev polynomials, Chebyshev linkage, and Chebyshev bias. The surname Chebyshev has been transliterated in several different ways, like Tchebichef, Tchebychev, Tchebycheff, Tschebyschev, Tschebyschef, Tschebyscheff, Čebyčev, Čebyšev, Chebysheff, Chebychov, Chebyshov (according to native Russian speakers, this one provides the closest pronunciation in English to the correct pronunciation in old Russian), and Chebychev, a mixture between English and French transliterations considered erroneous. It is one of the most well known data-retrieval nightmares in mathematical literature. Currently, the English transliteration Chebyshev has gained widespread acceptance, except by the French, who prefer Tchebychev. The correct transliteration according to ISO 9 is Čebyšëv. The American Mathematical Society adopted the transcription Chebyshev in its Mathematical Reviews. His first name comes from the Greek Paphnutius (Παφνούτιος), which in turn takes its origin in the Coptic Paphnuty (Ⲡⲁⲫⲛⲟⲩϯ), meaning "that who belongs to God" or simply "the man of God". One of nine children, Chebyshev was born in the village of Okatovo in the district of Borovsk, province of Kaluga. His father, Lev Pavlovich, was a Russian nobleman and wealthy landowner. Pafnuty Lvovich was first educated at home by his mother Agrafena Ivanovna Pozniakova (in reading and writing) and by his cousin Avdotya Kvintillianovna Sukhareva (in French and arithmetic). Chebyshev mentioned that his music teacher also played an important role in his education, for she "raised his mind to exactness and analysis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
Related publications (10)
Related people (2)
Related concepts (16)
Analytic number theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem).
Chebyshev's inequality
In probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) guarantees that, for a wide class of probability distributions, no more than a certain fraction of values can be more than a certain distance from the mean. Specifically, no more than 1/k2 of the distribution's values can be k or more standard deviations away from the mean (or equivalently, at least 1 − 1/k2 of the distribution's values are less than k standard deviations away from the mean).
Law of large numbers
In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed. The LLN is important because it guarantees stable long-term results for the averages of some random events.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.