Assisted GNSS (A-GNSS) is a GNSS augmentation system that often significantly improves the startup performance—i.e., time-to-first-fix (TTFF)—of a global navigation satellite system (GNSS). A-GNSS works by providing the necessary data to the device via a radio network instead of the slow satellite link, essentially "warming up" the receiver for a fix. When applied to GPS, it is known as assisted GPS or augmented GPS (abbreviated generally as A-GPS and less commonly as aGPS). Other local names include A-GANSS for Galileo and A-Beidou for BeiDou. A-GPS is extensively used with GPS-capable cellular phones, as its development was accelerated by the U.S. FCC's 911 requirement to make cell phone location data available to emergency call dispatchers. Every GPS device requires orbital data about the satellites to calculate its position. The data rate of the satellite signal is only 50 bit/s, so downloading orbital information like ephemerides and the almanac directly from satellites typically takes a long time, and if the satellite signals are lost during the acquisition of this information, it is discarded and the standalone system has to start from scratch. In exceptionally poor signal conditions, for example in urban areas, satellite signals may exhibit multipath propagation where signals skip off structures, or are weakened by meteorological conditions or tree canopies. Some standalone GPS navigators used in poor conditions can't fix a position because of satellite signal fracture and must wait for better satellite reception. A regular GPS unit may need as long as 12.5 minutes (the time needed to download the GPS almanac and ephemerides) to resolve the problem and be able to provide a correct location. In A-GPS, the network operator deploys an A-GPS server, a cache server for GPS data. These A-GPS servers download the orbital information from the satellite and store it in the database. An A-GPS-capable device can connect to these servers and download this information using mobile-network radio bearers such as GSM, CDMA, WCDMA, LTE or even using other radio bearers such as Wi-Fi or LoRa.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.