Concept

Igneous petrology

Summary
Igneous petrology is the study of igneous rocks—those that are formed from magma. As a branch of geology, igneous petrology is closely related to volcanology, tectonophysics, and petrology in general. The modern study of igneous rocks utilizes a number of techniques, some of them developed in the fields of chemistry, physics, or other earth sciences. Petrography, crystallography, and isotopic studies are common methods used in igneous petrology. The composition of igneous rocks and minerals can be determined via a variety of methods of varying ease, cost, and complexity. The simplest method is observation of hand samples with the naked eye and/or with a hand lens. This can be used to gauge the general mineralogical composition of the rock, which gives an insight into the composition. A more precise but still relatively inexpensive way to identify minerals (and thereby the bulk chemical composition of the rock) with a petrographic microscope. These microscopes have polarizing plates, filters, and a conoscopic lens that allow the user to measure a variety of crystallographic properties. Another method for determining mineralogy is to use X-ray diffraction, in which a powdered sample is bombarded by X-rays, and the resultant spectrum of crystallographic orientations is compared to a set of standards. One of the most precise ways of determining chemical composition is by the use of an electron microprobe, in which tiny spots of materials are sampled. Electron microprobe analyses can detect both bulk composition and trace element composition. Radiometric dating and Geochronology The dating of igneous rocks determines when magma solidified into rock. Radiogenic isotopes are frequently used to determine the age of igneous rocks. Potassium–argon dating In this dating method the amount of 40Ar trapped in a rock is compared to the amount of 40K in the rock to calculate the amount of time 40K must have been decaying in the solid rock to produce all 40Ar that would have otherwise not have been present there.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.