The roll center of a vehicle is the notional point at which the cornering forces in the suspension are reacted to the vehicle body.
There are two definitions of roll center. The most commonly used is the geometric (or kinematic) roll center, whereas the Society of Automotive Engineers uses a force-based definition.
Geometric roll center is solely dictated by the suspension geometry, and can be found using principles of the instant center of rotation.
Force based roll center, according to the US Society of Automotive Engineers, is "The point in the transverse vertical plane through any pair of wheel centers at which lateral forces may be applied to the sprung mass without producing suspension roll".
The lateral location of the roll center is typically at the center-line of the vehicle when the suspension on the left and right sides of the car are mirror images of each other.
The significance of the roll center can only be appreciated when the vehicle's center of mass is also considered. If there is a difference between the position of the center of mass and the roll center a moment arm is created. When the vehicle experiences angular velocity due to cornering, the length of the moment arm, combined with the stiffness of the springs and possibly anti-roll bars (also called 'anti-sway bar'), defines how much the vehicle will roll. This has other effects too, such as dynamic load transfer.
When the vehicle rolls the roll centers migrate. The roll center height has been shown to affect behavior at the initiation of turns such as nimbleness and initial roll control.
Current methods of analyzing individual wheel instant centers have yielded more intuitive results of the effects of non-rolling weight transfer effects. This type of analysis is better known as the lateral-anti method. This is where one takes the individual instant center locations of each corner of the car and then calculates the resultant vertical reaction vector due to lateral force. This value then is taken into account in the calculation of a jacking force and lateral weight transfer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition. In the automotive industry, handling and braking are the major components of a vehicle's "active" safety, as well as its ability to perform in auto racing.
In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point at any given time where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion.
Explores the mechanics of solids, emphasizing rotation and equilibrium principles.
Covers the kinematics and dynamics of solids in rotation, focusing on velocity and acceleration in different points within a solid.
Covers conceptual questions on rotational dynamics and torque application.