Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
We study generalization properties of random features (RF) regression in high dimensions optimized by stochastic gradient descent (SGD) in under-/overparameterized regime. In this work, we derive precise non-asymptotic error bounds of RF regression under b ...
In this paper, we formally investigate two mathematical aspects of Hermite splines that are relevant to practical applications. We first demonstrate that Hermite splines are maximally localized, in the sense that the size of their support is minimal among ...
We study the asymptotic behavior of the N-clock model, a nearest neighbors ferromagnetic spin model on the d-dimensional cubic epsilon-lattice in which the spin field is constrained to take values in a discretization S-N of the unit circle S-1 consisting o ...
This paper is devoted to the distributed complexity of finding an approximation of the maximum cut (MAXCUT) in graphs. A classical algorithm consists in letting each vertex choose its side of the cut uniformly at random. This does not require any communica ...
In this work, we consider the approximation of Hilbert space-valued meromorphic functions that arise as solution maps of parametric PDEs whose operator is the shift of an operator with normal and compact resolvent, e.g., the Helmholtz equation. In this res ...
In this paper, we study the compressibility of random processes and fields, called generalized Levy processes, that are solutions of stochastic differential equations driven by d-dimensional periodic Levy white noises. Our results are based on the estimati ...
This paper is devoted to the distributed complexity of finding an approximation of the maximum cut in graphs. A classical algorithm consists in letting each vertex choose its side of the cut uniformly at random. This does not require any communication and ...
Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area, most algorithms are randomized, and in almost all c ...
A CUR approximation of a matrix A is a particular type of low-rank approximation where C and R consist of columns and rows of A, respectively. One way to obtain such an approximation is to apply column subset selection to A and its transpose. In this work, ...