Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper is devoted to the distributed complexity of finding an approximation of the maximum cut (MAXCUT) in graphs. A classical algorithm consists in letting each vertex choose its side of the cut uniformly at random. This does not require any communication and achieves an approximation ratio of at least 1/2 in expectation. When the graph is d-regular and triangle-free, a slightly better approximation ratio can be achieved with a randomized algorithm running in a single round. Here, we investigate the round complexity of deterministic distributed algorithms for MAXCUT in regular graphs. We first prove that if G is d-regular, with d even and fixed, no deterministic algorithm running in a constant number of rounds can achieve a constant approximation ratio. We then give a simple one-round deterministic algorithm achieving an approximation ratio of 1/d for d-regular graphs when d is odd. We show that this is best possible in several ways, and in particular no deterministic algorithm with approximation ratio 1/d + epsilon (with epsilon > 0) can run in a constant number of rounds. We also prove results of a similar flavor for the MAXDICUT problem in regular oriented graphs, where we want to maximize the number of arcs oriented from the left part to the right part of the cut. (C) 2020 Elsevier B.V. All rights reserved.
, ,