Related courses (13)
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
CS-233: Introduction to machine learning
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
CS-433: Machine learning
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
MATH-408: Regression methods
General graduate course on regression methods
MGT-502: Data science and machine learning
Hands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
MGT-499: Statistics and data science
This class provides a hands-on introduction to statistics and data science, with a focus on causal inference, applications to sustainability issues using Python, and dissemination of scientific result
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
MATH-341: Linear models
Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
FIN-403: Econometrics
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.