In molecular biology, a RING (short for Really Interesting New Gene) finger domain is a protein structural domain of zinc finger type which contains a C3HC4 amino acid motif which binds two zinc cations (seven cysteines and one histidine arranged non-consecutively). This protein domain contains 40 to 60 amino acids. Many proteins containing a RING finger play a key role in the ubiquitination pathway.
Zinc finger
Zinc finger (Znf) domains are relatively small protein motifs that bind one or more zinc atoms, and which usually contain multiple finger-like protrusions that make tandem contacts with their target molecule. They bind DNA, RNA, protein and/or lipid substrates. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure.
They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.
Some Zn finger domains have diverged such that they still maintain their core structure, but have lost their ability to bind zinc, using other means such as salt bridges or binding to other metals to stabilise the finger-like folds.
Many RING finger domains simultaneously bind ubiquitination enzymes and their substrates and hence function as ligases. Ubiquitination in turn targets the substrate protein for degradation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
DNA damage signaling following DNA double-strand breaks (DSBs) involves numerous regulating proteins, which dynamically recognize ('read') and alter ('write' or 'erase') histone post-translational modifications (PTMs). Among these PTMs, the ubiquitin syste ...
A ubiquitin ligase (also called an E3 ubiquitin ligase) is a protein that recruits an E2 ubiquitin-conjugating enzyme that has been loaded with ubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin from the E2 to the protein substrate. In simple and more general terms, the ligase enables movement of ubiquitin from a ubiquitin carrier to another thing (the substrate) by some mechanism. The ubiquitin, once it reaches its destination, ends up being attached by an isopeptide bond to a lysine residue, which is part of the target protein.
Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the BRCA1 (ˌbrækəˈwʌn) gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. BRCA1 is a human tumor suppressor gene (also known as a caretaker gene) and is responsible for repairing DNA. BRCA1 and BRCA2 are unrelated proteins, but both are normally expressed in the cells of breast and other tissue, where they help repair damaged DNA, or destroy cells if DNA cannot be repaired.
There are 377 Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) in the human genome, making them the largest family of transcription factors. KZFPs are defined by a N-terminal KRAB domain and several zinc-finger domains arranged ...
Explores the design and validation of targeted protein degraders, including PROTACs and molecular glue compounds, emphasizing the importance of proper analyses and validations in TPD research.
RAPTA compounds, ([Ru(eta(6)-arene)(PTA)Cl-2], PTA = 1,3,5-triaza-7-phosphaadamantane), have been reported to overcome drug resistance in cisplatin resistant cells. However, the exact mechanism of these complexes is still largely unexplored. In this study, ...