Differentiable manifoldIn mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
Charles EhresmannCharles Ehresmann (19 April 1905 – 22 September 1979) was a German-born French mathematician who worked in differential topology and . He was an early member of the Bourbaki group, and is known for his work on the differential geometry of smooth fiber bundles, notably the introduction of the concepts of Ehresmann connection and of jet bundles, and for his seminar on category theory. Ehresmann was born in Strasbourg (at the time part of the German Empire) to an Alsatian-speaking family; his father was a gardener.
Jet bundleIn differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions. Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing geometrically with higher derivatives, by imposing differential form conditions on newly introduced formal variables.
Singularity theoryIn mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it on the floor, and flattening it. In some places the flat string will cross itself in an approximate "X" shape. The points on the floor where it does this are one kind of singularity, the double point: one bit of the floor corresponds to more than one bit of string.
Lagrangian systemIn mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → R over the time axis R. In particular, Q = R × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.
Differential operatorIn mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative.
DerivativeIn mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.