Quotient ringIn ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and ⋅ operations.
Nakayama's lemmaIn mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field.
Noetherian ringIn mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left (or right) ideals has a largest element; that is, there exists an n such that: Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated.
Completion of a ringIn abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent.
Maximal idealIn mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields.
Discrete valuation ringIn abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain R which satisfies any one of the following equivalent conditions: R is a local principal ideal domain, and not a field. R is a valuation ring with a value group isomorphic to the integers under addition. R is a local Dedekind domain and not a field. R is a Noetherian local domain whose maximal ideal is principal, and not a field.
Spectrum of a ringIn commutative algebra, the prime spectrum (or simply the spectrum) of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings . For any ideal I of R, define to be the set of prime ideals containing I. We can put a topology on by defining the to be This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For f ∈ R, define Df to be the set of prime ideals of R not containing f.
Absolute value (algebra)In algebra, an absolute value (also called a valuation, magnitude, or norm, although "norm" usually refers to a specific kind of absolute value on a field) is a function which measures the "size" of elements in a field or integral domain. More precisely, if D is an integral domain, then an absolute value is any mapping |x| from D to the real numbers R satisfying: It follows from these axioms that |1| = 1 and |-1| = 1. Furthermore, for every positive integer n, |n| = |1 + 1 + ... + 1 (n times)| = |−1 − 1 − .
Parity (mathematics)In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not. For example, −4, 0, 82 are even because By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings.
Ringed spaceIn mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid.