Non-methane volatile organic compounds (NMVOCs) are a set of organic compounds that are typically photochemically reactive in the atmosphere—marked by the exclusion of methane. NMVOCs include a large variety of chemically different compounds, such as benzene, ethanol, formaldehyde, cyclohexane, 1,1,1-trichloroethane and acetone. Essentially, NMVOCs are identical to volatile organic compounds (VOCs), but with methane excluded. Methane is excluded in air-pollution contexts because it is not toxic. It is however a very potent greenhouse gas, with low reactivity and thus a long lifetime in the atmosphere. An important subset of NMVOCs are the non-methane hydrocarbons (NMHCs).
Sometimes NMVOC is also used as a sum parameter for emissions, where all NMVOC emissions are added up per weight into one figure. In absence of more detailed data, this can be a very coarse parameter for pollution (e.g. for summer smog or indoor air pollution).
The major sources of NMVOCs include vegetation, biomass burning, geogenic sources, and human activity.
The study of NMVOCs is important in atmospheric chemistry, where it can be used as a proxy to study the collective properties of reactive atmospheric VOCs. The exclusion of methane is necessary due to its relatively high ambient concentration in comparison to other atmospheric species and its relative inertness. NMVOCs is an umbrella term which encompasses all speciated and oxygenated biogenic, anthropogenic, and pyrogenic organic molecules present in the atmosphere, minus the contribution of methane. The necessity of this term is also governed by current estimates which suggest that somewhere between 10,000 and 100,000 NMVOCs are present in the atmosphere, most with concentrations in the realm of parts per billion or parts per trillion. The aggregation of these compounds and their collective properties are easier to study than the individual components.
Many NMVOCs carry importance due to their influence on atmospheric ozone.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of indoor or outdoor surrounding either by chemical activities, physical or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases (including ammonia, carbon monoxide, sulfur dioxide, nitrous oxides, methane and chlorofluorocarbons), particulates (both organic and inorganic), and biological molecules.
This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol ...
MDPI2022
Atmospheric Black Carbon (BC) is one of the absorbing components of solar radiation which potentially affects human health and regional climate. In the current study, BC mass concentrations were regularly observed for pre-monsoon and monsoon seasons using ...
People are exposed to myriad of airborne pollutants in their homes. Owing to diverse potential sources of air pollution and human activity patterns, accurate assessment of residential exposures is complex. In this study, we explored the relationship betwee ...