In population genetics and population ecology, population size (usually denoted N) is a countable quantity representing the number of individual organisms in a population. Population size is directly associated with amount of genetic drift, and is the underlying cause of effects like population bottlenecks and the founder effect. Genetic drift is the major source of decrease of genetic diversity within populations which drives fixation and can potentially lead to speciation events.
Of the five conditions required to maintain Hardy-Weinberg Equilibrium, infinite population size will always be violated; this means that some degree of genetic drift is always occurring. Smaller population size leads to increased genetic drift, it has been hypothesized that this gives these groups an evolutionary advantage for acquisition of genome complexity. An alternate hypothesis posits that while genetic drift plays a larger role in small populations developing complexity, selection is the mechanism by which large populations develop complexity.
Population bottlenecks occur when population size reduces for a short period of time, decreasing the genetic diversity in the population.
The founder effect occurs when few individuals from a larger population establish a new population and also decreases the genetic diversity, and was originally outlined by Ernst Mayr. The founder effect is a unique case of genetic drift, as the smaller founding population has decreased genetic diversity that will move alleles within the population more rapidly towards fixation.
Genetic drift is typically modeled in lab environments using bacterial populations or digital simulation. In digital organisms, a generated population undergoes evolution based on varying parameters, including differential fitness, variation, and heredity set for individual organisms.
Rozen et al. use separate bacterial strains on two different mediums, one with simple nutrient components and one with nutrients noted to help populations of bacteria evolve more heterogeneity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Small populations can behave differently from larger populations. They are often the result of population bottlenecks from larger populations, leading to loss of heterozygosity and reduced genetic diversity and loss or fixation of alleles and shifts in allele frequencies. A small population is then more susceptible to demographic and genetic stochastic events, which can impact the long-term survival of the population. Therefore, small populations are often considered at risk of endangerment or extinction, and are often of conservation concern.
Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics.
Background: Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations ...
BMC2024
,
Owing to stochastic fluctuations arising from finite population size, known as genetic drift, the ability of a population to explore a rugged fitness landscape depends on its size. In the weak mutation regime, while the mean steady-state fitness increases ...
The gut microbiota features important genetic diversity, and the specific spatial features of the gut may shape evolution within this environment. We investigate the fixation probability of neutral bacterial mutants within a minimal model of the gut that i ...