MATH-131: Probability and statisticsLe cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
MATH-240: StatisticsCe cours donne une introduction au traitement mathématique de la théorie de l'inférence statistique en utilisant la notion de vraisemblance comme un thème central.
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-457: Geometric computingThis course will cover mathematical concepts and efficient numerical methods for geometric computing. We will explore the beauty of geometry and develop algorithms to simulate and optimize 2D and 3D g
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
FIN-417: Quantitative risk managementThis course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
PHYS-231: Data analysis for PhysicsCe cours présentera les bases de l'analyse des données et de l'apprentissage à partir des données, l'estimation des erreurs et la stochasticité en physique. Les concepts seront introduits théoriquemen
PHYS-423: Plasma IFollowing an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica