Summary
A point cloud is a discrete set of data points in space. The points may represent a 3D shape or object. Each point position has its set of Cartesian coordinates (X, Y, Z). Point clouds are generally produced by 3D scanners or by photogrammetry software, which measure many points on the external surfaces of objects around them. As the output of 3D scanning processes, point clouds are used for many purposes, including to create 3D computer-aided design (CAD) models for manufactured parts, for metrology and quality inspection, and for a multitude of visualizing, animating, rendering, and mass customization applications. Point set registration Point clouds are often aligned with 3D models or with other point clouds, a process termed point set registration. For industrial metrology or inspection using industrial computed tomography, the point cloud of a manufactured part can be aligned to an existing model and compared to check for differences. Geometric dimensions and tolerances can also be extracted directly from the point cloud. While point clouds can be directly rendered and inspected, point clouds are often converted to polygon mesh or triangle mesh models, non-uniform rational B-spline (NURBS) surface models, or CAD models through a process commonly referred to as surface reconstruction. There are many techniques for converting a point cloud to a 3D surface. Some approaches, like Delaunay triangulation, alpha shapes, and ball pivoting, build a network of triangles over the existing vertices of the point cloud, while other approaches convert the point cloud into a volumetric distance field and reconstruct the implicit surface so defined through a marching cubes algorithm. In geographic information systems, point clouds are one of the sources used to make digital elevation model of the terrain. They are also used to generate 3D models of urban environments. Drones are often used to collect a series of RGB images which can be later processed on a computer vision algorithm platform such as on AgiSoft Photoscan, Pix4D, DroneDeploy or Hammer Missions to create RGB point clouds from where distances and volumetric estimations can be made.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.