Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft. An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight". Note that this definition excludes both dirigibles (because they derive lift from buoyancy rather than from airflow over surfaces), and ballistic rockets (because their lifting force is typically derived directly and entirely from near-vertical thrust). Technically, both of these could be said to experience "flight mechanics" in the more general sense of physical forces acting on a body moving through air; but they operate very differently, and are normally outside the scope of this term. A heavier-than-air craft (aircraft) can only fly if a series of aerodynamic forces come to bear. In regard to fixed wing aircraft, the fuselage of the craft holds up the wings before takeoff. At the instant of takeoff, the reverse happens and the wings support the plane in flight. In flight a powered aircraft can be considered as being acted on by four forces: lift, weight, thrust, and drag. Thrust is the force generated by the engine (whether that engine be a jet engine, a propeller, or -- in exotic cases such as the X-15 -- a rocket) and acts in a forward direction for the purpose of overcoming drag. Lift acts perpendicular to the vector representing the aircraft's velocity relative to the atmosphere. Drag acts parallel to the aircraft's velocity vector, but in the opposite direction because drag resists motion through the air. Weight acts through the aircraft's centre of gravity, towards the centre of the Earth. In straight and level flight, lift is approximately equal to the weight, and acts in the opposite direction. In addition, if the aircraft is not accelerating, thrust is equal and opposite to drag. In straight climbing flight, lift is less than weight.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (5)
Aircraft flight dynamics
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation.
Airplane
An airplane (American English), or aeroplane (Commonwealth English), informally plane, is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spectrum of uses for airplanes includes recreation, transportation of goods and people, military, and research. Worldwide, commercial aviation transports more than four billion passengers annually on airliners and transports more than 200 billion tonne-kilometers of cargo annually, which is less than 1% of the world's cargo movement.
Flight
Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere (i.e. air flight or aviation) or through the vacuum of outer space (i.e. spaceflight). This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement. Many things can fly, from animal aviators such as birds, bats and insects, to natural gliders/parachuters such as patagial animals, anemochorous seeds and ballistospores, to human inventions like aircraft (airplanes, helicopters, airships, balloons, etc.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.