A longitudinal study (or longitudinal survey, or panel study) is a research design that involves repeated observations of the same variables (e.g., people) over long periods of time (i.e., uses longitudinal data). It is often a type of observational study, although it can also be structured as longitudinal randomized experiment.
Longitudinal studies are often used in social-personality and clinical psychology, to study rapid fluctuations in behaviors, thoughts, and emotions from moment to moment or day to day; in developmental psychology, to study developmental trends across the life span; and in sociology, to study life events throughout lifetimes or generations; and in consumer research and political polling to study consumer trends. The reason for this is that, unlike cross-sectional studies, in which different individuals with the same characteristics are compared, longitudinal studies track the same people, and so the differences observed in those people are less likely to be the result of cultural differences across generations, that is, the cohort effect. Longitudinal studies thus make observing changes more accurate and are applied in various other fields. In medicine, the design is used to uncover predictors of certain diseases. In advertising, the design is used to identify the changes that advertising has produced in the attitudes and behaviors of those within the target audience who have seen the advertising campaign. Longitudinal studies allow social scientists to distinguish short from long-term phenomena, such as poverty. If the poverty rate is 10% at a point in time, this may mean that 10% of the population are always poor or that the whole population experiences poverty for 10% of the time.
Longitudinal studies can be retrospective (looking back in time, thus using existing data such as medical records or claims database) or prospective (requiring the collection of new data).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
Epidemiology is a cornerstone of public health. Understanding the distribution and dynamics of diseases is critically important to manage or prevent them. Modern digital approaches are used increasing
We provide a comprehensive overview of the econometric tools that are essential to estimate financial models, both for asset pricing and
for corporate finance.
A longitudinal study (or longitudinal survey, or panel study) is a research design that involves repeated observations of the same variables (e.g., people) over long periods of time (i.e., uses longitudinal data). It is often a type of observational study, although it can also be structured as longitudinal randomized experiment.
In statistics and econometrics, cross-sectional data is a type of data collected by observing many subjects (such as individuals, firms, countries, or regions) at a single point or period of time. Analysis of cross-sectional data usually consists of comparing the differences among selected subjects, typically with no regard to differences in time. For example, if we want to measure current obesity levels in a population, we could draw a sample of 1,000 people randomly from that population (also known as a cross section of that population), measure their weight and height, and calculate what percentage of that sample is categorized as obese.
In fields such as epidemiology, social sciences, psychology and statistics, an observational study draws inferences from a sample to a population where the independent variable is not under the control of the researcher because of ethical concerns or logistical constraints. One common observational study is about the possible effect of a treatment on subjects, where the assignment of subjects into a treated group versus a control group is outside the control of the investigator.
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.
Motivated by the need for a better understanding of post-stroke recovery and new biomarkers to improve stroke patient stratification and outcomes, this thesis investigated structure-function coupling
Introduction Evidence suggests that the built environment can influence the intensity of physical activity. However, despite the importance of the geographic context, most of the studies do not consid
PUBLIC LIBRARY SCIENCE2022
, ,
Premature birth has been associated with poor neurodevelopmental outcomes. However, the relation between such outcomes and brain growth in the neonatal period has not yet been fully elucidated. This s