In fields such as epidemiology, social sciences, psychology and statistics, an observational study draws inferences from a sample to a population where the independent variable is not under the control of the researcher because of ethical concerns or logistical constraints. One common observational study is about the possible effect of a treatment on subjects, where the assignment of subjects into a treated group versus a control group is outside the control of the investigator. This is in contrast with experiments, such as randomized controlled trials, where each subject is randomly assigned to a treated group or a control group. Observational studies, for lacking an assignment mechanism, naturally present difficulties for inferential analysis.
The independent variable may be beyond the control of the investigator for a variety of reasons:
A randomized experiment would violate ethical standards. Suppose one wanted to investigate the abortion – breast cancer hypothesis, which postulates a causal link between induced abortion and the incidence of breast cancer. In a hypothetical controlled experiment, one would start with a large subject pool of pregnant women and divide them randomly into a treatment group (receiving induced abortions) and a control group (not receiving abortions), and then conduct regular cancer screenings for women from both groups. Needless to say, such an experiment would run counter to common ethical principles. (It would also suffer from various confounds and sources of bias, e.g. it would be impossible to conduct it as a blind experiment.) The published studies investigating the abortion–breast cancer hypothesis generally start with a group of women who already have received abortions. Membership in this "treated" group is not controlled by the investigator: the group is formed after the "treatment" has been assigned.
The investigator may simply lack the requisite influence. Suppose a scientist wants to study the public health effects of a community-wide ban on smoking in public indoor areas.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
The course provides an introduction to econometrics. The objective is to learn how to make valid (i.e., causal) inference from economic and social data. It explains the main estimators and present met
This is a seminar course. By reading and discussing an introductory book as well as research papers about computational social science, students will become familiar with core issues and techniques in
A longitudinal study (or longitudinal survey, or panel study) is a research design that involves repeated observations of the same variables (e.g., people) over long periods of time (i.e., uses longitudinal data). It is often a type of observational study, although it can also be structured as longitudinal randomized experiment.
A natural experiment is a study in which individuals (or clusters of individuals) are exposed to the experimental and control conditions that are determined by nature or by other factors outside the control of the investigators. The process governing the exposures arguably resembles random assignment. Thus, natural experiments are observational studies and are not controlled in the traditional sense of a randomized experiment (an intervention study).
Matching is a statistical technique which is used to evaluate the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned). The goal of matching is to reduce bias for the estimated treatment effect in an observational-data study, by finding, for every treated unit, one (or more) non-treated unit(s) with similar observable characteristics against which the covariates are balanced out.
Background Each year, five million people are left disabled after stroke. Upper -extremity (UE) dysfunction is a leading problem. Neuroplasticity can be enhanced by non-invasive brain stimulation (NIBS) but evidence from large, randomized multicenter trial ...
Despite the growing interest in emotions in engineering education, empirical research on incorporating them into engineering ethics education is limited. Therefore, we designed this experimental study to assess how different methods for integrating compass ...
Purpose: This study was designed and conducted to validate the reference values of hematological parameters for healthy adult male and female residents of Kabul city, Afghanistan. Methodology: In this cross-sectional study, the samples were collected accor ...