In chemical analysis, matrix refers to the components of a sample other than the analyte of interest. The matrix can have a considerable effect on the way the analysis is conducted and the quality of the results are obtained; such effects are called matrix effects. For example, the ionic strength of the solution can have an effect on the activity coefficients of the analytes. The most common approach for accounting for matrix effects is to build a calibration curve using standard samples with known analyte concentration and which try to approximate the matrix of the sample as much as possible. This is especially important for solid samples where there is a strong matrix influence. In cases with complex or unknown matrices, the standard addition method can be used. In this technique, the response of the sample is measured and recorded, for example, using an electrode selective for the analyte. Then, a small volume of standard solution is added and the response is measured again. Ideally, the standard addition should increase the analyte concentration by a factor of 1.5 to 3, and several additions should be averaged. The volume of standard solution should be small enough to disturb the matrix as little as possible.
Matrix enhancement and suppression is frequently observed in modern analytical routines, such as GC, HPLC, and ICP.
Matrix effect is quantitated by the use of the following formula:
where
A(extract) is the peak area of analyte, when diluted with matrix extract.
A(standard) is the peak area of analyte in the absence of matrix.
The concentration of analyte in both standards should be the same. A matrix effect value close to 100 indicates absence of matrix influence. A matrix effect value of less than 100 indicates suppression, while a value larger than 100 is a sign of matrix enhancement.
An alternative definition of matrix effect utilizes the formula:
The advantages of this definition are that negative values indicates suppression, while positive values are a sign of matrix enhancement.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cantilever beams are used as mass sensing device of chemical analyte by measuring the shift in frequency. However there resolution is linked to their size. As it become increasingly hard to produce smaller device an alternative is to use mode localisation ...
A novel method for the determination of linear and cyclic siloxane compounds (L2, L3, D3, D4, D5, and D6) in biogas was developed by combining gas chromatography (GC) with inductively coupled plasma mass spectrometry (ICP-MS). Using a continuous liquid que ...
The treatment of two-dimensional random walks in the quarter plane leads to Markov processes which involve semi-infinite matrices having Toeplitz or block Toeplitz structure plus a low-rank correction. We propose an extension of the framework introduced in ...
In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. A calibration curve is one approach to the problem of instrument calibration; other standard approaches may mix the standard into the unknown, giving an internal standard. The calibration curve is a plot of how the instrumental response, the so-called analytical signal, changes with the concentration of the analyte (the substance to be measured).
Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration. Analytical chemistry consists of classical, wet chemical methods and modern, instrumental methods.