Summary
In chemical kinetics, a reaction rate constant or reaction rate coefficient (k) is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants. For a reaction between reactants A and B to form a product C, where A and B are reactants C is a product a, b, and c are stoichiometric coefficients, the reaction rate is often found to have the form: Here k is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the solution. (For a reaction taking place at a boundary, one would use moles of A or B per unit area instead.) The exponents m and n are called partial orders of reaction and are not generally equal to the stoichiometric coefficients a and b. Instead they depend on the reaction mechanism and can be determined experimentally. Sum of m and n, that is, (m + n) is called the overall order of reaction. For an elementary step, there is a relationship between stoichiometry and rate law, as determined by the law of mass action. Almost all elementary steps are either unimolecular or bimolecular. For a unimolecular step the reaction rate is described by , where is a unimolecular rate constant. Since a reaction requires a change in molecular geometry, unimolecular rate constants cannot be larger than the frequency of a molecular vibration. Thus, in general, a unimolecular rate constant has an upper limit of k1 ≤ ~1013 s−1. For a bimolecular step the reaction rate is described by , where is a bimolecular rate constant. Bimolecular rate constants have an upper limit that is determined by how frequently molecules can collide, and the fastest such processes are limited by diffusion. Thus, in general, a bimolecular rate constant has an upper limit of k2 ≤ ~1010 M−1s−1. For a termolecular step the reaction rate is described by , where is a termolecular rate constant.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.