In climatology, the Coupled Model Intercomparison Project (CMIP) is a collaborative framework designed to improve knowledge of climate change. It was organized in 1995 by the Working Group on Coupled Modelling (WGCM) of the World Climate Research Programme (WCRP). It is developed in phases to foster the climate model improvements but also to support national and international assessments of climate change. A related project is the Atmospheric Model Intercomparison Project (AMIP) for global coupled ocean-atmosphere general circulation models (GCMs).
Coupled models are computer-based models of the earth's climate, in which different parts (such as atmosphere, oceans, land, ice) are "coupled" together, and interact in simulations.
The Program for Climate Model Diagnosis and Intercomparison (PCMDI) at Lawrence Livermore National Laboratory has been supporting the several CMIP phases by helping WGCM to determine the scope of the project, by maintaining the project's data base and by participating in data analysis. CMIP has received model output from the pre-industrial climate simulations ("control runs") and 1% per year increasing-CO2 simulations of about 30 coupled GCMs. More recent phases of the project, including 20th Century Climate in Coupled Models (20C3M), include more realistic scenarios of climate forcing for both historical, paleoclimate and future scenarios.
The response to the CMIP1 announcement was very successful and up to 18 global coupled models participated in the data collection representing most of the international groups with global coupled GCMs. In consequence, at the September 1996 meeting of the CLIVAR NEG2 numerical experimentation group in Victoria, Canada, it was decided that CMIP2 will be an inter-comparison of 1% per year compound increase integrations (80 years in length) where doubles at around year 70.
During 2005 and 2006, a collection of climate model outputs was coordinated and stored by PCMDI. The climate model outputs included simulations of past, present and future climate scenarios.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours présente les enjeux mondiaux liés au climat : système climatique et prévisions ; impacts sur écosystèmes et biodiversité; cadrage historique et débat public; objectifs et politiques climatiqu
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Le cours présente les enjeux mondiaux liés au climat: système climatique et prévisions ; impacts sur écosystèmes et biodiversité ; cadrage historique et débat public ; objectifs et politiques climatiq
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
A general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean. It uses the Navier–Stokes equations on a rotating sphere with thermodynamic terms for various energy sources (radiation, latent heat). These equations are the basis for computer programs used to simulate the Earth's atmosphere or oceans. Atmospheric and oceanic GCMs (AGCM and OGCM) are key components along with sea ice and land-surface components.
Climatology (from Greek κλίμα, klima, "slope"; and -λογία, -logia) or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years. Climate concerns the atmospheric condition during an extended to indefinite period of time; weather is the condition of the atmosphere during a relative brief period of time. The main topics of research are the study of climate variability, mechanisms of climate changes and modern climate change.
Efficient numerical simulations of coupled multi-component systems can be particularly challenging. This is mostly due to the complexity of their solutions, as mutual interactions may cause emergent behaviors, including synchronization and instabilities. V ...
Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban-focussed la ...
Hoboken2023
, , ,
Polar environments are among the fastest changing regions on the planet. It is a crucial time to make significant improvements in our understanding of how ocean and ice biogeochemical processes are linked with the atmosphere. This is especially true over A ...