The equivalence point, or stoichiometric point, of a chemical reaction is the point at which chemically equivalent quantities of reactants have been mixed. For an acid-base reaction the equivalence point is where the moles of acid and the moles of base would neutralize each other according to the chemical reaction. This does not necessarily imply a 1:1 molar ratio of acid:base, merely that the ratio is the same as in the chemical reaction. It can be found by means of an indicator, for example phenolphthalein or methyl orange.
The endpoint (related to, but not the same as the equivalence point) refers to the point at which the indicator changes color in a colorimetric titration.
Different methods to determine the equivalence point include:
pH indicator A pH indicator is a substance that changes color in response to a chemical change. An acid-base indicator (e.g., phenolphthalein) changes color depending on the pH. Redox indicators are also frequently used. A drop of indicator solution is added to the titration at the start; when the color changes the endpoint has been reached, this is an approximation of the equivalence point.
Conductance The conductivity of a solution depends on the ions that are present in it. During many titrations, the conductivity changes significantly. (For instance, during an acid-base titration, the H3O+ and OH− ions react to form neutral H2O. This changes the conductivity of the solution.) The total conductance of the solution depends also on the other ions present in the solution (such as counter ions). Not all ions contribute equally to the conductivity; this also depends on the mobility of each ion and on the total concentration of ions (ionic strength). Thus, predicting the change in conductivity is harder than measuring it.
Color change In some reactions, the solution changes color without any added indicator. This is often seen in redox titrations, for instance, when the different oxidation states of the product and reactant produce different colors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually or spectroscopically by changes in absorption and/or emission properties. Hence, a pH indicator is a chemical detector for hydronium ions (H3O+) or hydrogen ions (H+) in the Arrhenius model. Normally, the indicator causes the color of the solution to change depending on the pH. Indicators can also show change in other physical properties; for example, olfactory indicators show change in their odor.
Titration (also known as titrimetry and volumetric analysis) is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte (a substance to be analyzed). A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte (which may also be termed the titrand) to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.
Hydration of C(3)A-gypsum systems with different gypsum additions was investigated in terms of the phase assemblage, kinetics and microstructural development. The second stage of the reaction, which begins after the depletion of gypsum, was of particular i ...
2012
,
The dramatic increase in the number of diabetic people raised the requirement for developing practical diagnostic setups capable of rapid and precise detection of glucose molecules at physiological conditions through non-enzymatic approaches. To address th ...
ELSEVIER SCIENCE SA2021
, ,
The composition of novel terpolymers containing acrylamide (A), acryloyloxyethyltrimethylammonium chloride (Q), and bis-1,3(N,N,N-trimethylammonium)-2-propylmethacrylate dichloride (M) was analyzed combining FTIR and potentiometric titration. Calibration w ...