Ecological design or ecodesign is an approach to designing products and services that gives special consideration to the environmental impacts of a product over its entire lifecycle. Sim Van der Ryn and Stuart Cowan define it as "any form of design that minimizes environmentally destructive impacts by integrating itself with living processes." Ecological design can also be defined as the process of integrating environmental considerations into design and development with the aim of reducing environmental impacts of products through their life cycle.
The idea helps connect scattered efforts to address environmental issues in architecture, agriculture, engineering, and ecological restoration, among others. The term was first used by John Button in 1998. Ecological design was originally conceptualized as the “adding in “of environmental factor to the design process, but later turned to the details of eco-design practice, such as product system or individual product or industry as a whole. With the inclusion of life cycle modeling techniques, ecological design was related to the new interdisciplinary subject of industrial ecology.
As the whole product's life cycle should be regarded in an integrated perspective, representatives from advanced product design, production, marketing, purchasing, and project management should work together on the Ecodesign of a further developed or new product. Together, they have the best chance to predict the holistic effects of changes of the product and their environmental impact. Considerations of ecological design during product development is a proactive approach to eliminate environmental pollution due to product waste.
An eco-design product may have a cradle-to-cradle life cycle ensuring zero waste is created in the whole process. By mimicking life cycles in nature, eco-design can serve as a concept to achieve a truly circular economy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Environmentally sustainable design (also called environmentally conscious design, eco-design, etc.) is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability and also aimed at improving the health and comfort of occupants in a building. Sustainable design seeks to reduce negative impacts on the environment, the health and well-being of building occupants, thereby improving building performance.
Environmental design is the process of addressing surrounding environmental parameters when devising plans, programs, policies, buildings, or products. It seeks to create spaces that will enhance the natural, social, cultural and physical environment of particular areas. Classical prudent design may have always considered environmental factors; however, the environmental movement beginning in the 1940s has made the concept more explicit. Environmental design can also refer to the applied arts and sciences dealing with creating the human-designed environment.
A circular economy (also referred to as circularity or CE) is a model of production and consumption, which involves sharing, leasing, reusing, repairing, refurbishing and recycling existing materials and products for as long as possible. CE aims to tackle global challenges such as climate change, biodiversity loss, waste, and pollution by emphasizing the design-based implementation of the three base principles of the model.
Discusses economic pipe sizing, driving costs, water hammer analysis, and hydraulic structures.
Explores stream correction, protective measures, and flood prevention through plot and section modifications, emphasizing hydraulic capacity and environmental stability.
Delves into radical simplicity as a sustainable lifestyle solution, emphasizing conscious consumption and personal responsibility.
Uncertainty of spillover effects – including property devaluation - from proposed land-use change elicits opposition to local development. This hinders cities’ ability to implement land-use policy aimed at housing affordability and environmental sustainabi ...
The class introduces the concept of circular economy and its applications to building design, with a focus on design with reused components, design for disassembly, and life-cycle assessment. The clas
We will work with local stakeholders in the British town of Bridport to design housing responding to local needs not met by the traditional market. We will focus on how to make this housing characterf
We will work with local stakeholders in the British town of Bridport to design housing responding to local needs not met by the traditional market. We will focus on how to make this housing characterf
Designing novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although rec ...
The dynamic landscape of sustainable smart cities is witnessing a signi ficant transformation due to the integration of emerging computational technologies and innovative models. These advancements are reshaping data -driven planning strategies, practices, ...