Concept

Solubility pump

In oceanic biogeochemistry, the solubility pump is a physico-chemical process that transports carbon as dissolved inorganic carbon (DIC) from the ocean's surface to its interior. The solubility pump is driven by the coincidence of two processes in the ocean : The solubility of carbon dioxide is a strong inverse function of seawater temperature (i.e. solubility is greater in cooler water) The thermohaline circulation is driven by the formation of deep water at high latitudes where seawater is usually cooler and denser Since deep water (that is, seawater in the ocean's interior) is formed under the same surface conditions that promote carbon dioxide solubility, it contains a higher concentration of dissolved inorganic carbon than might be expected from average surface concentrations. Consequently, these two processes act together to pump carbon from the atmosphere into the ocean's interior. One consequence of this is that when deep water upwells in warmer, equatorial latitudes, it strongly outgasses carbon dioxide to the atmosphere because of the reduced solubility of the gas. The solubility pump has a biological counterpart known as the biological pump. For an overview of both pumps, see Raven & Falkowski (1999). Carbon dioxide, like other gases, is soluble in water. However, unlike many other gases (oxygen for instance), it reacts with water and forms a balance of several ionic and non-ionic species (collectively known as dissolved inorganic carbon, or DIC). These are dissolved free carbon dioxide (CO2 (aq)), carbonic acid (H2CO3), bicarbonate (HCO3−) and carbonate (CO32−), and they interact with water as follows : The balance of these carbonate species (which ultimately affects the solubility of carbon dioxide), is dependent on factors such as pH, as shown in a Bjerrum plot. In seawater this is regulated by the charge balance of a number of positive (e.g. Na+, K+, Mg2+, Ca2+) and negative (e.g. CO32− itself, Cl−, SO42−, Br−) ions. Normally, the balance of these species leaves a net positive charge.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.