Jacobi polynomialsIn mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. The Jacobi polynomials are defined via the hypergeometric function as follows: where is Pochhammer's symbol (for the rising factorial).
Pólya enumeration theoremThe Pólya enumeration theorem, also known as the Redfield–Pólya theorem and Pólya counting, is a theorem in combinatorics that both follows from and ultimately generalizes Burnside's lemma on the number of orbits of a group action on a set. The theorem was first published by J. Howard Redfield in 1927. In 1937 it was independently rediscovered by George Pólya, who then greatly popularized the result by applying it to many counting problems, in particular to the enumeration of chemical compounds.
Fibonacci polynomialsIn mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials. These Fibonacci polynomials are defined by a recurrence relation: The Lucas polynomials use the same recurrence with different starting values: They can be defined for negative indices by The Fibonacci polynomials form a sequence of orthogonal polynomials with and .
Twelvefold wayIn combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number. The idea of the classification is credited to Gian-Carlo Rota, and the name was suggested by Joel Spencer. Let N and X be finite sets. Let and be the cardinality of the sets. Thus N is an n-set, and X is an x-set.
Padovan sequenceIn number theory, the Padovan sequence is the sequence of integers P(n) defined by the initial values and the recurrence relation The first few values of P(n) are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, ... A Padovan prime is a Padovan number that is prime. The first Padovan primes are: 2, 3, 5, 7, 37, 151, 3329, 23833, 13091204281, 3093215881333057, 1363005552434666078217421284621279933627102780881053358473, 1558877695141608507751098941899265975115403618621811951868598809164180630185566719, .
Bell polynomialsIn combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula. The partial or incomplete exponential Bell polynomials are a triangular array of polynomials given by where the sum is taken over all sequences j1, j2, j3, ..., jn−k+1 of non-negative integers such that these two conditions are satisfied: The sum is called the nth complete exponential Bell polynomial.
Zeta function regularizationIn mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.
Symbolic method (combinatorics)In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions.