In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula. The partial or incomplete exponential Bell polynomials are a triangular array of polynomials given by where the sum is taken over all sequences j1, j2, j3, ..., jn−k+1 of non-negative integers such that these two conditions are satisfied: The sum is called the nth complete exponential Bell polynomial. Likewise, the partial ordinary Bell polynomial is defined by where the sum runs over all sequences j1, j2, j3, ..., jn−k+1 of non-negative integers such that The ordinary Bell polynomials can be expressed in the terms of exponential Bell polynomials: In general, Bell polynomial refers to the exponential Bell polynomial, unless otherwise explicitly stated. The exponential Bell polynomial encodes the information related to the ways a set can be partitioned. For example, if we consider a set {A, B, C}, it can be partitioned into two non-empty, non-overlapping subsets, which are also referred to as parts or blocks, in 3 different ways: {{A}, {B, C}} {{B}, {A, C}} {{C}, {B, A}} Thus, we can encode the information regarding these partitions as Here, the subscripts of B3,2 tell us that we are considering the partitioning of a set with 3 elements into 2 blocks. The subscript of each xi indicates the presence of a block with i elements (or block of size i) in a given partition. So here, x2 indicates the presence of a block with two elements. Similarly, x1 indicates the presence of a block with a single element. The exponent of xij indicates that there are j such blocks of size i in a single partition. Here, the fact that both x1 and x2 have exponent 1 indicates that there is only one such block in a given partition. The coefficient of the monomial indicates how many such partitions there are. Here, there are 3 partitions of a set with 3 elements into 2 blocks, where in each partition the elements are divided into two blocks of sizes 1 and 2.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.